Superplastic Behavior of Al-Mg-Mn Alloy: An Experimental & Numerical Investigation

Article Preview

Abstract:

Deformation response of Al-4.46Mg-0.48Mn alloy under uniaxial tensile loading was investigated at temperatures ranging from 400°C - 525°C and at strain rates of 3x10-3 s-1, 1x 10-3 s-1 & 10-4 s-1. The alloy exhibited a maximum elongation >480% at a strain rate of 10-3s-1 and 525°C. At all conditions, the dominant deformation mechanism governing the superplastic deformation was investigated as a function of strain rate and temperature. The contributions of strain-rate sensitivity and strain hardening were analyzed in relation to the observed tensile ductility. The strain rate sensitivity index (m) and average activation energy (Q) values revealed that the dominant deformation mechanism is grain boundary sliding (GBS). The GBS phenomenon was further confirmed through high magnification examination of deformed surface. Optical microscopy (OM) and Scanning Electron Microscopy (SEM) showed that dynamic re-crystallization occurs during hot deformation of the alloy which causes reasonable enhancement of plasticity.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] D.H. Avery and W.A. Backofen: A Structural Basis for Superplast., Trans., 58 (1965) 551-62.

Google Scholar

[2] M.F. Ashby and R.A. Verrall: Diffusion-Accommodated Flow and Superplast. Acta Metal., 21 (1973) 149-63.

Google Scholar

[3] R.C. Gifkins: Grain-Boundary Sliding and its Accommodation During Creep and Superplasticity, Metall. Trans., 7A (1976) 1225-1232.

DOI: 10.1007/bf02656607

Google Scholar

[4] R.C. Gifkins: Effect of Grain Size and Stress Upon Grain Boundary Sliding, Metall. Trans., 10A (1977) 1507-16.

DOI: 10.1007/bf02644853

Google Scholar

[5] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, New York, (1996).

Google Scholar

[6] E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, J. Wadsworth, Warm-temperature tensile ductility in Al-Mg alloys. Metall. Mat. Trans. A, 29 (1998) 1081-1092.

DOI: 10.1007/s11661-998-0300-1

Google Scholar

[7] S.S. Woo, Y.R. Kim, D.H. Shin, W.J. Kim, Effects of Mg concentration on the quasi- superplasticity of coarse-grained Al-Mg alloys. Scr. Mater., 37 (1997) 1351-1357.

DOI: 10.1016/s1359-6462(97)00275-3

Google Scholar

[8] H. B. Genga, S. B. Kangb, B. K. Min, High temperature tensile behavior of ultra-fine grained A1-3.3Mg-0.2Sc- 0.2Zr alloy by equal channel angular pressing, J. Mat. Sci. Eng. A, A313 (2004) 229-238.

DOI: 10.1016/j.msea.2004.01.047

Google Scholar

[9] Kumar, D. Ravi, Swaminathan, K, Tensile deformation behaviour of two aluminum alloys at elevated temperatures, Mater. Hig. Temp., 16 (1999) 161- 172.

DOI: 10.3184/096034099783641119

Google Scholar

[10] G.Bernal, R.S. Mishra, et al., High strain rate superplasticity in continuous cast Al–Mg alloys prepared via friction stir processing, Scr. Mat., 60 (2009) 850–853.

DOI: 10.1016/j.scriptamat.2009.01.030

Google Scholar

[11] M.A. Kulas, W. Paul Green, et al., Deformation Mechanisms in Superplastic AA5083 . Metall. Mater. Trans.A, 36 (2005) 1249-1261.

DOI: 10.1007/s11661-005-0217-x

Google Scholar

[12] S. W. Lee, J. W. Yeh, Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion, J. Mat. Sci. Eng. A, 460 (2007) 409-419.

DOI: 10.1016/j.msea.2007.01.121

Google Scholar

[13] O. D. Sherby, J.Wadsworth, Super plasticity-recent advances and future directions, J. Prog. Mat. Sci., 33 (1989) 169-221.

Google Scholar

[14] Watanabe H, MukaI T, Nieh T G, Higashi K. Low temperature superplasticity in a magnesium-based composite [J]. Scripta Materialia, 2000, 42: 249-255.

DOI: 10.1016/s1359-6462(99)00357-7

Google Scholar

[15] N. Q. Chinh, P. Szommera, T. Csanbi, T. G. Langdon, Flow processes at low temperatures in ultrafine-grained aluminum, J. Mat. Sci. Eng. A, 434 (2006) 326-334.

DOI: 10.1016/j.msea.2006.07.014

Google Scholar

[16] H. Iwasaki, H. Hosokawa, T. Mori, T. Tagata, K. Higashi, Quantitative assessment of superplastic deformation behaviour in a commercial 5083 alloy, Mate. Sci. Eng. A, 252 (1998) 199–202.

DOI: 10.1016/s0921-5093(98)00678-9

Google Scholar

[17] Y.N. Wang, J.C. Huang, Comparison of grain boundary sliding in fine-grained Mg and Al alloys during superplastic deformation, Scri. Mat., 48 (2003) 1117–1122.

DOI: 10.1016/s1359-6462(02)00615-2

Google Scholar