[1]
D.H. Avery and W.A. Backofen: A Structural Basis for Superplast., Trans., 58 (1965) 551-62.
Google Scholar
[2]
M.F. Ashby and R.A. Verrall: Diffusion-Accommodated Flow and Superplast. Acta Metal., 21 (1973) 149-63.
Google Scholar
[3]
R.C. Gifkins: Grain-Boundary Sliding and its Accommodation During Creep and Superplasticity, Metall. Trans., 7A (1976) 1225-1232.
DOI: 10.1007/bf02656607
Google Scholar
[4]
R.C. Gifkins: Effect of Grain Size and Stress Upon Grain Boundary Sliding, Metall. Trans., 10A (1977) 1507-16.
DOI: 10.1007/bf02644853
Google Scholar
[5]
T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, New York, (1996).
Google Scholar
[6]
E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, J. Wadsworth, Warm-temperature tensile ductility in Al-Mg alloys. Metall. Mat. Trans. A, 29 (1998) 1081-1092.
DOI: 10.1007/s11661-998-0300-1
Google Scholar
[7]
S.S. Woo, Y.R. Kim, D.H. Shin, W.J. Kim, Effects of Mg concentration on the quasi- superplasticity of coarse-grained Al-Mg alloys. Scr. Mater., 37 (1997) 1351-1357.
DOI: 10.1016/s1359-6462(97)00275-3
Google Scholar
[8]
H. B. Genga, S. B. Kangb, B. K. Min, High temperature tensile behavior of ultra-fine grained A1-3.3Mg-0.2Sc- 0.2Zr alloy by equal channel angular pressing, J. Mat. Sci. Eng. A, A313 (2004) 229-238.
DOI: 10.1016/j.msea.2004.01.047
Google Scholar
[9]
Kumar, D. Ravi, Swaminathan, K, Tensile deformation behaviour of two aluminum alloys at elevated temperatures, Mater. Hig. Temp., 16 (1999) 161- 172.
DOI: 10.3184/096034099783641119
Google Scholar
[10]
G.Bernal, R.S. Mishra, et al., High strain rate superplasticity in continuous cast Al–Mg alloys prepared via friction stir processing, Scr. Mat., 60 (2009) 850–853.
DOI: 10.1016/j.scriptamat.2009.01.030
Google Scholar
[11]
M.A. Kulas, W. Paul Green, et al., Deformation Mechanisms in Superplastic AA5083 . Metall. Mater. Trans.A, 36 (2005) 1249-1261.
DOI: 10.1007/s11661-005-0217-x
Google Scholar
[12]
S. W. Lee, J. W. Yeh, Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion, J. Mat. Sci. Eng. A, 460 (2007) 409-419.
DOI: 10.1016/j.msea.2007.01.121
Google Scholar
[13]
O. D. Sherby, J.Wadsworth, Super plasticity-recent advances and future directions, J. Prog. Mat. Sci., 33 (1989) 169-221.
Google Scholar
[14]
Watanabe H, MukaI T, Nieh T G, Higashi K. Low temperature superplasticity in a magnesium-based composite [J]. Scripta Materialia, 2000, 42: 249-255.
DOI: 10.1016/s1359-6462(99)00357-7
Google Scholar
[15]
N. Q. Chinh, P. Szommera, T. Csanbi, T. G. Langdon, Flow processes at low temperatures in ultrafine-grained aluminum, J. Mat. Sci. Eng. A, 434 (2006) 326-334.
DOI: 10.1016/j.msea.2006.07.014
Google Scholar
[16]
H. Iwasaki, H. Hosokawa, T. Mori, T. Tagata, K. Higashi, Quantitative assessment of superplastic deformation behaviour in a commercial 5083 alloy, Mate. Sci. Eng. A, 252 (1998) 199–202.
DOI: 10.1016/s0921-5093(98)00678-9
Google Scholar
[17]
Y.N. Wang, J.C. Huang, Comparison of grain boundary sliding in fine-grained Mg and Al alloys during superplastic deformation, Scri. Mat., 48 (2003) 1117–1122.
DOI: 10.1016/s1359-6462(02)00615-2
Google Scholar