[1]
E. Moncada, R. Quijada, J. Retuert, Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene, Nanotechnol., 18 (2007) 335606 - 613.
DOI: 10.1088/0957-4484/18/33/335606
Google Scholar
[2]
X. Yu, T. J. Marks, A. Facchetti, Metal oxides for optoelectronic applications, Nat. Mater., 15 (2016) 383–396.
DOI: 10.1038/nmat4599
Google Scholar
[3]
R. Sui, P. Charpentier, Synthesis of Metal Oxide Nanostructures by Direct Sol–Gel Chemistry in Supercritical Fluids, Chem. Rev., 112 (2012) 3057–3082.
DOI: 10.1021/cr2000465
Google Scholar
[4]
I. A. Rahman, V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites, J. Nanomater., 2012 (2012) 132424-39.
DOI: 10.1155/2012/132424
Google Scholar
[5]
S. Tripathy, D. S. Saini, D. Bhattacharya, Synthesis and fabrication of MgAl2O4 ceramic foam via a simple, low-cost and eco-friendly method, J. Asi. Cera. Soci., 4 (2016) 149-154.
DOI: 10.1016/j.jascer.2016.01.008
Google Scholar
[6]
V. Vohra, W. Mroz, S. Inaba, W. Porzio, U. Giovanella, F. Galeotti, Low-cost and green fabrication of polymer electronic devices by push-coating the polymer active layers, ACS Appl. Mater. Interf., 9 (2017) 25434–25444.
DOI: 10.1021/acsami.7b07857
Google Scholar
[7]
C. Chen, Y. Wang, G. Pan, Q. Wang, Gel-sol synthesis of surface-treated TiO2 nanoparticles and incorporation with waterborne acrylic resin systems for clear UV protective coatings, Journal of Coatings Technol. Resear., 11 (2014) 785–791.
DOI: 10.1007/s11998-014-9583-x
Google Scholar
[9]
B. A. van Driela, P. J. Kooymand, K. J. van den Bergb, A. Schmidt-Otte, J. Dikc, A quick assessment of the photocatalytic activity of TiO2 pigments — From lab to conservation studio, Microche. J., 126 (2016) 162-171.
DOI: 10.1016/j.microc.2015.11.048
Google Scholar
[10]
P. Lu, S. C. Huang, Y. P. Chen, L. C. Chiueh, D. Y. C. Shih, Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, Journal of Food and Drug Analysis 23 (2015) 587-594.
DOI: 10.1016/j.jfda.2015.02.009
Google Scholar
[11]
M. Tanahashi, Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding Based Approach without Surface Modification of Nanofillers, Mater., 3 (2010) 1593-1619.
DOI: 10.3390/ma3031593
Google Scholar
[12]
M. Eslamian, Inorganic and Organic Solution-Processed Thin Film Devices, Nano-Micro Lett., 9:3 (2017) 1-23.
DOI: 10.1007/s40820-016-0106-4
Google Scholar
[13]
N. S. Khalid, F. I. M. Fazli, N. K. A. Hamed, M. L. M. Napi, S. C. Fhong, M. K. Ahmad, Biocompatibility of TiO2 Nanorods and Nanoparticles on HeLa Cells, Sains Malaysiana 45 (2016) 1675–1678.
Google Scholar
[14]
M. M. Rashad, A. E. Shalan, M. L. Cantú, M. S. A. Abdel-Mottaleb, Enhancement of TiO2 nanoparticle properties and efficiency of dye-sensitized solar cells using modifiers Authors Authors and affiliations, Appl. Nanosci., 3 (2013) 167-174.
DOI: 10.1007/s13204-012-0117-5
Google Scholar
[15]
Y. Lu, S. Guan, L. Hao, H. Yoshida, Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application, Coat.,5 (2015) 425-464.
DOI: 10.3390/coatings5030425
Google Scholar
[16]
T. Busani1, R. A. B Devine, Dielectric and infrared properties of TiO2 films containing anatase and rutile, Semicond. Sci. Technol., 20 (2005) 870–875.
DOI: 10.1088/0268-1242/20/8/043
Google Scholar
[17]
W. Siah, H. O. Lintang, M. Shamsuddin, L. Yuliati, High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles, IOP Conf. Series: Mater. Sci.Eng., 107 (2016) 012005.
DOI: 10.1088/1757-899x/107/1/012005
Google Scholar
[18]
N. G. Park, J. V. Lagemaat, A. J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, Journal of Phy. Chem, B, 104 (2000) 8989-8994.
DOI: 10.1021/jp994365l
Google Scholar
[19]
K. Fischer, A. Gawel, D. Rosen, M. Krause, A. A. Latif, J. Griebel, A. Prager, A.Schulze, Low-Temperature Synthesis of Anatase/Rutile/Brookite TiO2 Nanoparticles on a Polymer Membrane for Photocatalysis, Catal., 7 (2017) 1-14.
DOI: 10.3390/catal7070209
Google Scholar
[20]
S. Saehana, R. Prasetyowati, M. I. Hidayat, P. Arifin, Khairurrijal, M. Abdullah, Efficiency Improvement in TiO2-Particle based Solar Cells after Deposition on Metal in Spaces between Particles, International Journal of Bas.Appl. Sci., 6 (2011).
Google Scholar
[21]
W. Li, R. Liang, A. Hu, Z. Huanga, Y. N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts, RSC Adv., 4 (2014) 36959–36966.
DOI: 10.1039/c4ra04768k
Google Scholar
[22]
D. L. Domtau1, J. Simiyu, E. O. Ayieta, B. Muthoka1, J. M. Mwabora1, Optical and Electrical Properties Dependence on Thickness of Screen-Printed TiO2 Thin Films, J. Mater.s Phy. Chem., 4 (2016) 1-3.
Google Scholar
[23]
J. Xu, X. Xiao, A. L. Stepanov, F. Ren, W. Wu, G. Cai, S. Zhang, Z. Dai1, F. Mei, C. Jiang, Efficiency enhancements in Ag nanoparticles-SiO2 -TiO2 sandwiched structure via plasmonic effect-enhanced light capturing, Nanosc. Res. Lett., 8:73 (2013).
DOI: 10.1186/1556-276x-8-73
Google Scholar
[24]
R. Kaur, B. Pal, Plasmonic Coinage Metal-TiO2 Hybrid Nanocatalysts for Highly Efficient Photocatalytic Oxidation under Sunlight Irradiation, New J.Chem., 39 (2015) 5966-5976.
DOI: 10.1039/c5nj00450k
Google Scholar