Low Temperature Synthesis of Anatase TiO2 Nanoparticles and its Application in Nanocrystalline Thin Films

Article Preview

Abstract:

The nano-sized TiO2 is an important material based on its application for solar cells. The low-cost synthesis of nano-sized TiO2 is of high demand for commercial purposes. Synthesis of TiO2 nanoparticles was achieved via the low-temperature Sol-gel method. Surface morphology was confirmed from SEM analysis, which showed that particle size is in the range of nanometer with no aggregation, The XRD results confirm the formation of anatase phase with high crystallinity. Furthermore, as prepared nano-sized TiO2 particles were developed as sol-gel ink which was later deposited by spin coating on glass substrate with controlled spinning speed thereafter structural and optical properties were characterized by UV-vis spectroscopy, electrochemical impedance spectroscopy and DSC-TGA. The low-cost synthesis of TiO2 nanoparticles with highly conductive thin films can be used as a potential material for future dye-sensitized solar cells

You have full access to the following eBook

Info:

* - Corresponding Author

[1] E. Moncada, R. Quijada, J. Retuert, Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene, Nanotechnol., 18 (2007) 335606 - 613.

DOI: 10.1088/0957-4484/18/33/335606

Google Scholar

[2] X. Yu, T. J. Marks, A. Facchetti, Metal oxides for optoelectronic applications, Nat. Mater., 15 (2016) 383–396.

DOI: 10.1038/nmat4599

Google Scholar

[3] R. Sui, P. Charpentier, Synthesis of Metal Oxide Nanostructures by Direct Sol–Gel Chemistry in Supercritical Fluids, Chem. Rev., 112 (2012) 3057–3082.

DOI: 10.1021/cr2000465

Google Scholar

[4] I. A. Rahman, V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites, J. Nanomater., 2012 (2012) 132424-39.

DOI: 10.1155/2012/132424

Google Scholar

[5] S. Tripathy, D. S. Saini, D. Bhattacharya, Synthesis and fabrication of MgAl2O4 ceramic foam via a simple, low-cost and eco-friendly method, J. Asi. Cera. Soci., 4 (2016) 149-154.

DOI: 10.1016/j.jascer.2016.01.008

Google Scholar

[6] V. Vohra, W. Mroz, S. Inaba, W. Porzio, U. Giovanella, F. Galeotti, Low-cost and green fabrication of polymer electronic devices by push-coating the polymer active layers, ACS Appl. Mater. Interf., 9 (2017) 25434–25444.

DOI: 10.1021/acsami.7b07857

Google Scholar

[7] C. Chen, Y. Wang, G. Pan, Q. Wang, Gel-sol synthesis of surface-treated TiO2 nanoparticles and incorporation with waterborne acrylic resin systems for clear UV protective coatings, Journal of Coatings Technol. Resear., 11 (2014) 785–791.

DOI: 10.1007/s11998-014-9583-x

Google Scholar

[9] B. A. van Driela, P. J. Kooymand, K. J. van den Bergb, A. Schmidt-Otte, J. Dikc, A quick assessment of the photocatalytic activity of TiO2 pigments — From lab to conservation studio, Microche. J., 126 (2016) 162-171.

DOI: 10.1016/j.microc.2015.11.048

Google Scholar

[10] P. Lu, S. C. Huang, Y. P. Chen, L. C. Chiueh, D. Y. C. Shih, Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, Journal of Food and Drug Analysis 23 (2015) 587-594.

DOI: 10.1016/j.jfda.2015.02.009

Google Scholar

[11] M. Tanahashi, Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding Based Approach without Surface Modification of Nanofillers, Mater., 3 (2010) 1593-1619.

DOI: 10.3390/ma3031593

Google Scholar

[12] M. Eslamian, Inorganic and Organic Solution-Processed Thin Film Devices, Nano-Micro Lett., 9:3 (2017) 1-23.

DOI: 10.1007/s40820-016-0106-4

Google Scholar

[13] N. S. Khalid, F. I. M. Fazli, N. K. A. Hamed, M. L. M. Napi, S. C. Fhong, M. K. Ahmad, Biocompatibility of TiO2 Nanorods and Nanoparticles on HeLa Cells, Sains Malaysiana 45 (2016) 1675–1678.

Google Scholar

[14] M. M. Rashad, A. E. Shalan, M. L. Cantú, M. S. A. Abdel-Mottaleb, Enhancement of TiO2 nanoparticle properties and efficiency of dye-sensitized solar cells using modifiers Authors Authors and affiliations, Appl. Nanosci., 3 (2013) 167-174.

DOI: 10.1007/s13204-012-0117-5

Google Scholar

[15] Y. Lu, S. Guan, L. Hao, H. Yoshida, Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application, Coat.,5 (2015) 425-464.

DOI: 10.3390/coatings5030425

Google Scholar

[16] T. Busani1, R. A. B Devine, Dielectric and infrared properties of TiO2 films containing anatase and rutile, Semicond. Sci. Technol., 20 (2005) 870–875.

DOI: 10.1088/0268-1242/20/8/043

Google Scholar

[17] W. Siah, H. O. Lintang, M. Shamsuddin, L. Yuliati, High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles, IOP Conf. Series: Mater. Sci.Eng., 107 (2016) 012005.

DOI: 10.1088/1757-899x/107/1/012005

Google Scholar

[18] N. G. Park, J. V. Lagemaat, A. J. Frank, Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, Journal of Phy. Chem, B, 104 (2000) 8989-8994.

DOI: 10.1021/jp994365l

Google Scholar

[19] K. Fischer, A. Gawel, D. Rosen, M. Krause, A. A. Latif, J. Griebel, A. Prager, A.Schulze, Low-Temperature Synthesis of Anatase/Rutile/Brookite TiO2 Nanoparticles on a Polymer Membrane for Photocatalysis, Catal., 7 (2017) 1-14.

DOI: 10.3390/catal7070209

Google Scholar

[20] S. Saehana, R. Prasetyowati, M. I. Hidayat, P. Arifin, Khairurrijal, M. Abdullah, Efficiency Improvement in TiO2-Particle based Solar Cells after Deposition on Metal in Spaces between Particles, International Journal of Bas.Appl. Sci., 6 (2011).

Google Scholar

[21] W. Li, R. Liang, A. Hu, Z. Huanga, Y. N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts, RSC Adv., 4 (2014) 36959–36966.

DOI: 10.1039/c4ra04768k

Google Scholar

[22] D. L. Domtau1, J. Simiyu, E. O. Ayieta, B. Muthoka1, J. M. Mwabora1, Optical and Electrical Properties Dependence on Thickness of Screen-Printed TiO2 Thin Films, J. Mater.s Phy. Chem., 4 (2016) 1-3.

Google Scholar

[23] J. Xu, X. Xiao, A. L. Stepanov, F. Ren, W. Wu, G. Cai, S. Zhang, Z. Dai1, F. Mei, C. Jiang, Efficiency enhancements in Ag nanoparticles-SiO2 -TiO2 sandwiched structure via plasmonic effect-enhanced light capturing, Nanosc. Res. Lett., 8:73 (2013).

DOI: 10.1186/1556-276x-8-73

Google Scholar

[24] R. Kaur, B. Pal, Plasmonic Coinage Metal-TiO2 Hybrid Nanocatalysts for Highly Efficient Photocatalytic Oxidation under Sunlight Irradiation, New J.Chem., 39 (2015) 5966-5976.

DOI: 10.1039/c5nj00450k

Google Scholar