Modeling of Phases Adhesion in Composite Materials Based on Spring Finite Element with Zero Length

Abstract:

Article Preview

A new numerical method for homogenization of elastic properties of dispersedly-reinforced composites was presented. The method takes into account special model of adhesive contact. Homogenization of properties was performed by averaging the solutions of boundary value problems on representative volume cell (RVC) using the finite element method (FEM). A new approach of calculation of components of effective tensor of elastic moduli was proposed. A heterogeneous finite element model with elements of two types was built: three-dimensional tetrahedron elements for every phases and spring element with zero-length for adhesion layer with zero-thickness. The results of homogenization of elastic properties of dispersedly-reinforced composites with variable stiffness of the adhesive layer between phases were obtained and analyzed. The homogenization results were compared with the available experimental data.

Info:

Periodical:

Edited by:

Vladimir Khovaylo and Ghenadii Korotcenkov

Pages:

3-9

Citation:

A. P. Sokolov and V. N. Schetinin, "Modeling of Phases Adhesion in Composite Materials Based on Spring Finite Element with Zero Length", Key Engineering Materials, Vol. 780, pp. 3-9, 2018

Online since:

September 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Christensen R. Mechanics of Composite Materials. John Wiley and Sons, 1979. 348 p.

[2] Dimitrienko, Y.I., Sokolov, A.P., Shpakova, Y.V. Computer-aided analysis of micromechanics and damage of composite materials based on multiscale homogenization method. Materials Research Society Symposium Proceedings. Volume 1535, 2013, Pages 105-111.

DOI: https://doi.org/10.1557/opl.2013.466

[3] Dimitrienko, Yu.I., Sborshchikov, S.V., Sokolov, A.P. Numerical simulation of microdestruction and strength characteristics of spatially reinforced composites // Composites: Mechanics, Computations, Applications, An International Journal. - 2013. - Vol. 4. - № 4. - pages 345-364.

DOI: https://doi.org/10.1615/compmechcomputapplintj.v4.i4.50

[4] Alberto Corigliano, Stefano Mariani, Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites. Composites Science and Technology. 2001, Vol. 61, No. 2, Pp. 191-203.

DOI: https://doi.org/10.1016/s0266-3538(00)00171-8

[5] Kaminski M, Kleiber M. Numerical homogenization of N-component composites including stochastic interface defects. International Journal for Numerical Methods in Engineering. 2000, Vol.47, No.5, Pp.1001-1027.

DOI: https://doi.org/10.1002/(sici)1097-0207(20000220)47:5<1001::aid-nme814>3.0.co;2-v

[6] Shihua Nie, Cemal Basaran. A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds. International Journal of Solids and Structures.2005, Vol. 42, No. 14, Pp. 4179-4191.

DOI: https://doi.org/10.1016/j.ijsolstr.2004.12.009

[7] Shia, D. and Hui, C. Y. and Burnside, S. D. and Giannelis, E. P. An interface model for the prediction of Young's modulus of layered silicate-elastomer nanocomposites. Polymer Composites.1998, Vol.19, No.5, Pp. 608-617.

DOI: https://doi.org/10.1002/pc.10134

[8] Broutman L., Agarwal B. A theoretical study of the effect of an interfacial layer on the properties of composites. Polymer Engineering and Science.1974, Vol.14, No.8, Pp.581–588.

DOI: https://doi.org/10.1002/pen.760140808

[9] Fisher F., Brinson L. Viscoelastic interphases in polymer–matrix composites: theoretical models and finite-element analysis. Composites Science and Technology. 2001, Vol.61, No.5, Pp.731-748.

DOI: https://doi.org/10.1016/s0266-3538(01)00002-1

[10] Gaul, L., Mayer, M.: Modeling of contact interfaces in built-up structures by zero-thickness elements. In: Proceedings of the IMAC XXVI (2008).

[11] Goncalves J.P.M, de Moura M.F.S.F, de Castro P.M.S.T. A three-dimensional finite element model for stress analysis of adhesive joints. International Journal of Adhesion and Adhesives. 2002, Vol.22, No.5, pp.357-365.

DOI: https://doi.org/10.1016/s0143-7496(02)00015-5

[12] Sokolov A. P. Matematicheskoe modelirovanie effektivnykh uprugikh kharakteristik kompozitov s mnogo-urovnevoi ierarkhicheskoi strukturoi [Mathematical modeling of effective elastic characteristics of composites with a multilevel hierarchical structure]: PhD. Thesis, BMSTU, (2009).

[13] Bakhvalov N.S. Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh [Averaging processes in periodic media]. – Moskva: Nauka, 1984, 352 p.

[14] Dimitrienko Iu.I., Sokolov A.P. Chislennoe modelirovanie kompozitsionnykh materialov s mnogourovnevoi strukturoi [Numerical modeling of composite materials with a multilevel structure].Proceedings of the Russian Academy of Sciences. Physical series, 2011, Vol.75, No.1, Pp.1551-1556.

[15] Agasiev, T. and Karpenko, A. The Program System for Automated Parameter Tuning of Optimization Algorithms (Conference Paper). Procedia Computer Science, 2017, Vol. 103, pp.347-354.

DOI: https://doi.org/10.1016/j.procs.2017.01.120

[16] Karpenko, A.P.; Moor, D.A. and Mukhlisullina, D. T.; Multicriteria Optimization Based on Neural Network, Fuzzy and Neur- Fuzzy Approximation of Decision Maker's Utility Function. Optical memory and neural networks (information optics). 2012, Vol. 21, No. 1, pp.1-10.

DOI: https://doi.org/10.3103/s1060992x12010031

[17] Sakharov, M. and Karpenko, A.P. A new way of decomposing search domain in a global optimization problem (Conference Paper). Advances in Intelligent Systems and Computing. 2018, Vol. 679, pp.398-407.

DOI: https://doi.org/10.1007/978-3-319-68321-8_41

[18] Smith J. Experimental values for the elastic constants of a particulate-filled glassy polymer // J. Res. NBS. – 1976. – №80A. – C.45–49.