Modeling of Phases Adhesion in Composite Materials Based on Spring Finite Element with Zero Length

Article Preview

Abstract:

A new numerical method for homogenization of elastic properties of dispersedly-reinforced composites was presented. The method takes into account special model of adhesive contact. Homogenization of properties was performed by averaging the solutions of boundary value problems on representative volume cell (RVC) using the finite element method (FEM). A new approach of calculation of components of effective tensor of elastic moduli was proposed. A heterogeneous finite element model with elements of two types was built: three-dimensional tetrahedron elements for every phases and spring element with zero-length for adhesion layer with zero-thickness. The results of homogenization of elastic properties of dispersedly-reinforced composites with variable stiffness of the adhesive layer between phases were obtained and analyzed. The homogenization results were compared with the available experimental data.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Christensen R. Mechanics of Composite Materials. John Wiley and Sons, 1979. 348 p.

Google Scholar

[2] Dimitrienko, Y.I., Sokolov, A.P., Shpakova, Y.V. Computer-aided analysis of micromechanics and damage of composite materials based on multiscale homogenization method. Materials Research Society Symposium Proceedings. Volume 1535, 2013, Pages 105-111.

DOI: 10.1557/opl.2013.466

Google Scholar

[3] Dimitrienko, Yu.I., Sborshchikov, S.V., Sokolov, A.P. Numerical simulation of microdestruction and strength characteristics of spatially reinforced composites // Composites: Mechanics, Computations, Applications, An International Journal. - 2013. - Vol. 4. - № 4. - pages 345-364.

DOI: 10.1615/compmechcomputapplintj.v4.i4.50

Google Scholar

[4] Alberto Corigliano, Stefano Mariani, Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites. Composites Science and Technology. 2001, Vol. 61, No. 2, Pp. 191-203.

DOI: 10.1016/s0266-3538(00)00171-8

Google Scholar

[5] Kaminski M, Kleiber M. Numerical homogenization of N-component composites including stochastic interface defects. International Journal for Numerical Methods in Engineering. 2000, Vol.47, No.5, Pp.1001-1027.

DOI: 10.1002/(sici)1097-0207(20000220)47:5<1001::aid-nme814>3.0.co;2-v

Google Scholar

[6] Shihua Nie, Cemal Basaran. A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds. International Journal of Solids and Structures.2005, Vol. 42, No. 14, Pp. 4179-4191.

DOI: 10.1016/j.ijsolstr.2004.12.009

Google Scholar

[7] Shia, D. and Hui, C. Y. and Burnside, S. D. and Giannelis, E. P. An interface model for the prediction of Young's modulus of layered silicate-elastomer nanocomposites. Polymer Composites.1998, Vol.19, No.5, Pp. 608-617.

DOI: 10.1002/pc.10134

Google Scholar

[8] Broutman L., Agarwal B. A theoretical study of the effect of an interfacial layer on the properties of composites. Polymer Engineering and Science.1974, Vol.14, No.8, Pp.581–588.

DOI: 10.1002/pen.760140808

Google Scholar

[9] Fisher F., Brinson L. Viscoelastic interphases in polymer–matrix composites: theoretical models and finite-element analysis. Composites Science and Technology. 2001, Vol.61, No.5, Pp.731-748.

DOI: 10.1016/s0266-3538(01)00002-1

Google Scholar

[10] Gaul, L., Mayer, M.: Modeling of contact interfaces in built-up structures by zero-thickness elements. In: Proceedings of the IMAC XXVI (2008).

DOI: 10.51202/9783181022955-271

Google Scholar

[11] Goncalves J.P.M, de Moura M.F.S.F, de Castro P.M.S.T. A three-dimensional finite element model for stress analysis of adhesive joints. International Journal of Adhesion and Adhesives. 2002, Vol.22, No.5, pp.357-365.

DOI: 10.1016/s0143-7496(02)00015-5

Google Scholar

[12] Sokolov A. P. Matematicheskoe modelirovanie effektivnykh uprugikh kharakteristik kompozitov s mnogo-urovnevoi ierarkhicheskoi strukturoi [Mathematical modeling of effective elastic characteristics of composites with a multilevel hierarchical structure]: PhD. Thesis, BMSTU, (2009).

Google Scholar

[13] Bakhvalov N.S. Panasenko G.P. Osrednenie protsessov v periodicheskikh sredakh [Averaging processes in periodic media]. – Moskva: Nauka, 1984, 352 p.

Google Scholar

[14] Dimitrienko Iu.I., Sokolov A.P. Chislennoe modelirovanie kompozitsionnykh materialov s mnogourovnevoi strukturoi [Numerical modeling of composite materials with a multilevel structure].Proceedings of the Russian Academy of Sciences. Physical series, 2011, Vol.75, No.1, Pp.1551-1556.

Google Scholar

[15] Agasiev, T. and Karpenko, A. The Program System for Automated Parameter Tuning of Optimization Algorithms (Conference Paper). Procedia Computer Science, 2017, Vol. 103, pp.347-354.

DOI: 10.1016/j.procs.2017.01.120

Google Scholar

[16] Karpenko, A.P.; Moor, D.A. and Mukhlisullina, D. T.; Multicriteria Optimization Based on Neural Network, Fuzzy and Neur- Fuzzy Approximation of Decision Maker's Utility Function. Optical memory and neural networks (information optics). 2012, Vol. 21, No. 1, pp.1-10.

DOI: 10.3103/s1060992x12010031

Google Scholar

[17] Sakharov, M. and Karpenko, A.P. A new way of decomposing search domain in a global optimization problem (Conference Paper). Advances in Intelligent Systems and Computing. 2018, Vol. 679, pp.398-407.

DOI: 10.1007/978-3-319-68321-8_41

Google Scholar

[18] Smith J. Experimental values for the elastic constants of a particulate-filled glassy polymer // J. Res. NBS. – 1976. – №80A. – C.45–49.

Google Scholar