Structure and Phase Composition of a Ti Film–Al Substrate System Irradiated with an Intense Pulsed Electron Beam

Article Preview

Abstract:

Commercially pure A7 aluminum was exposed to surface modification in a single vacuum cycle which included vacuum arc evaporation and deposition of commercially pure titanium and intense electron beam irradiation and melting of the film–substrate system using a plasma-cathode pulsed electron source. The deposited Ti film thickness was 0.5 and 1 μm. The irradiated Ti–Al system revealed a multilayer multiphase structure consisting of submicro-and nanosized elements with intermetallic inclusions Al3Ti, Al2Ti, and TiAl3. The Ti film during irradiation broke up into fragments with their immersion in the molten Al surface layer to a depth of 20 μm. The modified material surpassed the initial aluminum in wear resistance by a factor of 2.4 and in microhardness by a factor larger than 4. The main cause for the high surface hardness and high wear resistance of the modified aluminum was likely the formation of both the intermetallic particles and the Ti-hardened transition layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-107

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.H. Froes, C. Suryanarayana, D. Eliezer, Synthesis, properties and applications of titanium aluminides, J. Mater. Sci. 27(19) (1992) 5113-5140.

DOI: 10.1007/bf02403806

Google Scholar

[2] J. Hampshire, P.J. Kelly, D.G. Teer, Structure and mechanical properties of co-deposited TiAl thin films, Thin Solid Films 420-421 (2002) 386-391.

DOI: 10.1016/s0040-6090(02)00851-9

Google Scholar

[3] I.A. Kurzina, E.V. Kozlov, Yu.P. Sharkeev, A.I. Ryabchikov, I.B. Stepanov, I.A. Bozhko, M.P. Kalashnikov, D.O. Sivin, S.V. Fortuna, Influence of ion implantation on nanoscale intermetallic-phase formation in Ti–Al, Ni–Al and Ni–Ti systems, Surf. Coat. Technol. 201 (2007).

DOI: 10.1016/j.surfcoat.2006.02.062

Google Scholar

[4] B. Guo, J. Zhou, S. Zhang, H. Zhou, Y. Pu, J. Chen, Tribological properties of titanium aluminides coatings produced on pure Ti by laser surface alloying, Surf. Coat. Technol. 202(17) (2008) 4121– 4129.

DOI: 10.1016/j.surfcoat.2008.02.026

Google Scholar

[5] V.P. Rotshtein, Yu.F. Ivanov, Yu.A. Kolubaeva, X. Mei, A.B. Markov, E.P. Naiden, G.E. Ozur, K.V. Oskomov, S.A. Popov, E.L. Pryadko, A.D. Teresov, V.A. Shulov, Synthesis of Ti3Al and TiAl based surface alloys by pulsed electron-beam melting of Al(film)/Ti(substrate) system, Technical Physics Letters 37(3) (2011).

DOI: 10.1134/s1063785011030126

Google Scholar

[6] S.A. Popov, D.I. Proskurovsky, E.L. Pryadko, A.V. Batrakov, A.B. Markov, G.E. Ozur, V.P Rotshtein, High-current pulsed vacuum-arc evaporator for surface-alloying technologies, IEEE Trans. Plasma Sci. 37(8) (2009) 1504-1510.

DOI: 10.1109/tps.2009.2024750

Google Scholar

[7] N.N. Koval, Y.F. Ivanov, I.V. Lopatin, Y.H. Akhmadeev, V.V. Shugurov, O.V. Krysina, V.V. Denisov, Generation of low-temperature gas discharge plasma in large vacuum volumes for plasma chemical processes, Russian Journal of General Chemistry 85(5) (2015) 1326-1338.

DOI: 10.1134/s1070363215050485

Google Scholar

[8] Yu.F. Ivanov, O.V. Krysina, E.A. Petrikova, A.D. Teresov, V.V. Shugurov, O.S. Tolkachev, Complex Electronion Plasma Treatment of Titanium: Methods, Structure, Properties, High Temperature Material Processes 21(1) (2017) 53–64.

DOI: 10.1615/hightempmatproc.2017021265

Google Scholar

[9] V.N. Devyatkov, Yu.F. Ivanov, O.V. Krysina, N.N. Koval, E.A. Petrikova, V.V. Shugurov, Equipment and processes of vacuum electron-ion plasma surface engineering, Vacuum 143 (2017) 464-472.

DOI: 10.1016/j.vacuum.2017.04.016

Google Scholar

[10] Yu.F. Ivanov, N.N. Koval, V.I. Vlasov, A.D. Teresov, E.A. Petrikova, V.V. Shugurov, O.V. Ivanova, I.A. Ikonnikova, A.A. Klopotov, The structure of the surface alloy formed as a result of high-speed melting of the film (TiCu)/substrate (Al) system, High Temperature Material Processes 17(4) (2013).

DOI: 10.1615/hightempmatproc.2015014039

Google Scholar

[11] Yu.F. Ivanov, O.V. Krysina, M. Rygina, E.A. Petrikova, A.D. Teresov, V.V. Shugurov, O.V. Ivanova, I.A. Ikonnikova, Combined modification of aluminum by electron-ion-plasma methods, High Temperature Material Processes 18(4) (2014) 311-317.

DOI: 10.1615/hightempmatproc.2015015710

Google Scholar

[12] N.N. Koval, Yu.F. Ivanov (eds.), Electron-ion-plasma modification of surfaces of non-ferrous metals and alloys Publishing House of Scientific and Technological Literature, Tomsk, (2016).

Google Scholar

[13] Yu. Ivanov, O. Krysina, E. Petrikova, O. Ivanova, I.A. Ikonnikova, M. Rygina, Numerical simulation of thermal processes involved in surface alloying of aluminum with titanium by an intense pulsed electron beam, Key Engineering Materials 683 (2016).

DOI: 10.4028/www.scientific.net/kem.683.569

Google Scholar