[1]
F.H. Froes, C. Suryanarayana, D. Eliezer, Synthesis, properties and applications of titanium aluminides, J. Mater. Sci. 27(19) (1992) 5113-5140.
DOI: 10.1007/bf02403806
Google Scholar
[2]
J. Hampshire, P.J. Kelly, D.G. Teer, Structure and mechanical properties of co-deposited TiAl thin films, Thin Solid Films 420-421 (2002) 386-391.
DOI: 10.1016/s0040-6090(02)00851-9
Google Scholar
[3]
I.A. Kurzina, E.V. Kozlov, Yu.P. Sharkeev, A.I. Ryabchikov, I.B. Stepanov, I.A. Bozhko, M.P. Kalashnikov, D.O. Sivin, S.V. Fortuna, Influence of ion implantation on nanoscale intermetallic-phase formation in Ti–Al, Ni–Al and Ni–Ti systems, Surf. Coat. Technol. 201 (2007).
DOI: 10.1016/j.surfcoat.2006.02.062
Google Scholar
[4]
B. Guo, J. Zhou, S. Zhang, H. Zhou, Y. Pu, J. Chen, Tribological properties of titanium aluminides coatings produced on pure Ti by laser surface alloying, Surf. Coat. Technol. 202(17) (2008) 4121– 4129.
DOI: 10.1016/j.surfcoat.2008.02.026
Google Scholar
[5]
V.P. Rotshtein, Yu.F. Ivanov, Yu.A. Kolubaeva, X. Mei, A.B. Markov, E.P. Naiden, G.E. Ozur, K.V. Oskomov, S.A. Popov, E.L. Pryadko, A.D. Teresov, V.A. Shulov, Synthesis of Ti3Al and TiAl based surface alloys by pulsed electron-beam melting of Al(film)/Ti(substrate) system, Technical Physics Letters 37(3) (2011).
DOI: 10.1134/s1063785011030126
Google Scholar
[6]
S.A. Popov, D.I. Proskurovsky, E.L. Pryadko, A.V. Batrakov, A.B. Markov, G.E. Ozur, V.P Rotshtein, High-current pulsed vacuum-arc evaporator for surface-alloying technologies, IEEE Trans. Plasma Sci. 37(8) (2009) 1504-1510.
DOI: 10.1109/tps.2009.2024750
Google Scholar
[7]
N.N. Koval, Y.F. Ivanov, I.V. Lopatin, Y.H. Akhmadeev, V.V. Shugurov, O.V. Krysina, V.V. Denisov, Generation of low-temperature gas discharge plasma in large vacuum volumes for plasma chemical processes, Russian Journal of General Chemistry 85(5) (2015) 1326-1338.
DOI: 10.1134/s1070363215050485
Google Scholar
[8]
Yu.F. Ivanov, O.V. Krysina, E.A. Petrikova, A.D. Teresov, V.V. Shugurov, O.S. Tolkachev, Complex Electronion Plasma Treatment of Titanium: Methods, Structure, Properties, High Temperature Material Processes 21(1) (2017) 53–64.
DOI: 10.1615/hightempmatproc.2017021265
Google Scholar
[9]
V.N. Devyatkov, Yu.F. Ivanov, O.V. Krysina, N.N. Koval, E.A. Petrikova, V.V. Shugurov, Equipment and processes of vacuum electron-ion plasma surface engineering, Vacuum 143 (2017) 464-472.
DOI: 10.1016/j.vacuum.2017.04.016
Google Scholar
[10]
Yu.F. Ivanov, N.N. Koval, V.I. Vlasov, A.D. Teresov, E.A. Petrikova, V.V. Shugurov, O.V. Ivanova, I.A. Ikonnikova, A.A. Klopotov, The structure of the surface alloy formed as a result of high-speed melting of the film (TiCu)/substrate (Al) system, High Temperature Material Processes 17(4) (2013).
DOI: 10.1615/hightempmatproc.2015014039
Google Scholar
[11]
Yu.F. Ivanov, O.V. Krysina, M. Rygina, E.A. Petrikova, A.D. Teresov, V.V. Shugurov, O.V. Ivanova, I.A. Ikonnikova, Combined modification of aluminum by electron-ion-plasma methods, High Temperature Material Processes 18(4) (2014) 311-317.
DOI: 10.1615/hightempmatproc.2015015710
Google Scholar
[12]
N.N. Koval, Yu.F. Ivanov (eds.), Electron-ion-plasma modification of surfaces of non-ferrous metals and alloys Publishing House of Scientific and Technological Literature, Tomsk, (2016).
Google Scholar
[13]
Yu. Ivanov, O. Krysina, E. Petrikova, O. Ivanova, I.A. Ikonnikova, M. Rygina, Numerical simulation of thermal processes involved in surface alloying of aluminum with titanium by an intense pulsed electron beam, Key Engineering Materials 683 (2016).
DOI: 10.4028/www.scientific.net/kem.683.569
Google Scholar