Resource-Saving Microsphere Technology for Friction Composite Materials

Article Preview

Abstract:

The paper proposes the miscrosphere electro-plasma technology based on the processing of bottom ash generated by the Belovo Power Plant, Kemerovo region, Russia. During the electro-plasma processing, the current-voltage characteristic of plasma flow is determined. It is shown that it considerably depends on the gas rate. For example, at 300 А arc current and the increase of gas rate from 1.0 to 2.0 g/s, the arc voltage grows from 130 to 180 V. The X-ray photoelectron spectroscopy allows obtaining the distribution maps for the elemental composition of the microsphere surface and detecting the element concentration. From the infrared spectroscopy, it is possible to conclude that the amorphized layer of obtained microspheres is characterized by an ordered structure, because 1093.82 сm-1 maximum position of the absorption band for stretching vibration is as close as possible to that for silica glass (1100 сm-1) representing a more ordered polymer structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.E. Kornienko, E.J. Lapushkina, V.I. Kuzmin, S.P. Vaschenko, I.P. Gulyaev, E.V. Kartaev, D.S. Sergachev, N. Kashapov, S. Sharifullin, I. Fayrushin, Air plasma sprayed coatings of self-fluxing powder materials, Journal of Physics: Conference Series 567 (2014).

DOI: 10.1088/1742-6596/567/1/012010

Google Scholar

[2] V.F. Myshkin, E.V. Bespala, V.A. Khan, S.V. Makarevich, Laws of the oxidation of carbon isotopes in plasma processes under magnetic field, IOP Conference Series: Materials Science and Engineering 135 (2016) 012029.

DOI: 10.1088/1757-899x/135/1/012029

Google Scholar

[3] G. Gupta, A. Satapathy, Erosive wear characteristics of plasma-sprayed coatings of glass microspheres premixed with TiO2 particles, Tribology Transactions 59 (2016) 80–88.

DOI: 10.1080/10402004.2015.1045648

Google Scholar

[4] V.F. Myshkin, V.A. Khan, V.G. Plekhanov, D.A. Izhoykin, E.V. Bespala, Spin Isotope Separation Under Incomplete Carbon Oxidation in a Low-Temperature Plasma in an External Magnetic Field, Russian Physics Journal 57 (2015) 1442–1448.

DOI: 10.1007/s11182-015-0401-4

Google Scholar

[5] A.S. Zhukov, V.A. Arkhipov, S.S. Bondarchuk, V.D. Gol'din, Evaluation of the morphology of particles produced by plasma-chemical synthesis of ceramic powders, Rus. J. Phys. Chem., 7 (2013) 777–782.

DOI: 10.1134/s199079311306016x

Google Scholar

[6] L. Huidong, S. Qi, W. Baodong, W. Peipei, Z. Jianhua, Morphology and Composition of Microspheres in Fly Ash from the Luohuang Power Plant, Chongqing, Southwestern China Minerals 6 (2016) 30.

DOI: 10.3390/min6020030

Google Scholar

[7] E.V. Fomenko, N.N. Anshits, N.G. Vasil'eva, E.S. Rogovenko, O.A. Mikhaylova, E.V. Mazurova, L.A. Solovyev, A.G. Anshits, Composition and structure of the shells of aluminosilicate microspheres in fly ash formed on the combustion of Ekibastuz coal, Solid Fuel. Chem. 50 (2016).

DOI: 10.3103/s0361521916040030

Google Scholar

[8] O.G. Volokitin, M.A. Sheremet, V.V. Shekhovtsov, N.S. Bondareva, V.I. Kuzmin, Studying regimes of convective heat transfer in the production of high-temperature silicate melts, Thermophys. Aeromech. 23 (2016) 755–765.

DOI: 10.1134/s0869864316050140

Google Scholar

[9] A.R. Bogomolov, E.Yu. Temnikova, S.A. Shevyrev, A.V. Poltavets, A.S. Sysolyatin, Prospects of Using Fly Ash Produced at Kemerovo State District Power Station, MATEC Web of Conferences 37 (2015) 01010.

DOI: 10.1051/matecconf/20153701010

Google Scholar

[10] A.S. Sysolyatin, I.A. Zvingul, E.Yu. Temnikova, Analysis of Fractionated Fly Ash and Slag at Kemerovo State District Power Plant, MATEC Web of Conferences 72 (2016) 01137.

DOI: 10.1051/matecconf/20167201137

Google Scholar

[11] D.V. Dudina, S.B. Zlobin, N.V. Bulina, A.L. Bychkov, V.N. Korolyuk, V.Yu. Ulianitsky, O.I. Lomovsky, Detonation spraying of TiO2-2.5vol.%Ag powders in a reducing atmosphere, J. Eur. Ceram. Soc. 32 (2012) 815-821.

DOI: 10.1016/j.jeurceramsoc.2011.10.022

Google Scholar

[12] O.P. Solonenko, I.P. Gulyaev, A.V. Smirnov, Thermal Plasma Processes for Production of Hollow Spherical Powders: Theory and Experiment, J. Therm. Sci. Tech. 2 (2011) 219–234.

DOI: 10.1299/jtst.6.219

Google Scholar

[13] V.V. Shekhovtsov, O.G. Volokitin, A.A. Kondratyuk, R. E. Vitske, Fly ash particles spheroidization using low temperature plasma energy, IOP Conf. Series: Materials Science and Engineering 156 (2016) 012043.

DOI: 10.1088/1757-899x/156/1/012043

Google Scholar

[14] V.V. Shekhovtsov, G.G. Volokitin, N.K. Skripnikova, О.G. Volokitin, R.E. Gafarov, Plasma treatment of agglomerating aluminosilicate powders based on coal ash, AIP Conference Proceedings 1800 (2017) 020008.

DOI: 10.1063/1.4973024

Google Scholar

[15] V. Shekhovtsov, O. Volokitin, N. Tsetkov, G. Volokitin, N. Skripnikova, Aluminosilicate Microsphere Synthesis in Plasma Flow, Materials Science Forum 906 (2017) 131-136.

DOI: 10.4028/www.scientific.net/msf.906.131

Google Scholar