Plasma Technologies in Construction Industry

Article Preview

Abstract:

The paper introduces plasma technologies developed at the Department of Applied Mechanics and Materials Science (TSUAB, Tomsk, Russia). These technologies include the processing techniques for silica glass, microspheres, and protective-decorative coatings for silicate materials using the low-temperature plasma. The plasma effect on silicate materials is described in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.Y. Belozerova, M.A. Mikhailov, Assessment of the homogeneity of the synthesized beryllium-bearing silicate glass for its use as a quality control material in the X-ray electron probe microanalysis of silicates, Journal of Analytical Chemistry 72 (2017).

DOI: 10.1134/s1061934817050045

Google Scholar

[2] E. Maddrell, S. Thornber, N. C. Hyatt, The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms, Journal of Nuclear Materials 456 (2015)461–466.

DOI: 10.1016/j.jnucmat.2014.10.010

Google Scholar

[3] V.V. Sirotyuk, G.M. Pogrebinskii, Processes of structure formation in plasma treatment of soils to the stage of a silicate melt, Refractories and Industrial Ceramics 41 (2000) 24–27.

DOI: 10.1007/bf02698449

Google Scholar

[4] R. Pillai, C. Jariwala, K. Kumar, S. Kumar, Process optimization of SiO2 interface coating on carbon fibre by RF PECVD for advanced composites, Surfaces and Interfaces 9 (2017) 21–27.

DOI: 10.1016/j.surfin.2017.07.002

Google Scholar

[5] K. Panwar, M. Jassal, A.K. Agrawal, Atmospheric pressure plasma-assisted green synthesis of amphiphilic SiO2 Janus particles, Particuology 33 (2017) 50–54.

DOI: 10.1016/j.partic.2016.12.004

Google Scholar

[6] I. Hirka, O. Živný, M. Hrabovský, Numerical Modelling of Wood Gasification in Thermal Plasma Reactor, Plasma Chemistry and Plasma Processing 37 (2017) 947–965.

DOI: 10.1007/s11090-017-9812-z

Google Scholar

[7] M. Shigeta, A.B. Murphy, Thermal plasmas for nanofabrication, J. Phys. D: Appl. Phys. 44 (2011) 174025.

DOI: 10.1088/0022-3727/44/17/174025

Google Scholar

[8] K. Shinoda, Y. Kojima, T. Yoshida, In situ measurement system for deformation and solidification phenomena of yttria-stabilized zirconia droplets impinging on quartz glass substrate under plasma-spraying conditions, J Therm Spray Tech 14 (2005).

DOI: 10.1361/105996305x76531

Google Scholar

[9] A.S. Anshakov, E.K. Urbakh, S.I. RadKo, A.E. Urbakh, V.A. Faleev, Generation of plasma flows by arc plasmatrons, Thermal Engineering 60 (2013) 878–881.

DOI: 10.1134/s0869864314010096

Google Scholar

[10] O.P. Solonenko, V.A. Blednov, V.I. Jordan, Stochastic computer simulation of cermet coatings formation, Advances in Materials Science and Engineering (2015) 396427.

DOI: 10.1155/2015/396427

Google Scholar

[11] V.V. Astashynski, Modeling the surface morphology of iron under the influence of compression plasma impulse, High Temperature Material Processes 19 (2015) 307–317.

DOI: 10.1615/hightempmatproc.2016016940

Google Scholar

[12] V. Valinciute, R. Kerzelis, V. Valincius, P. Valatkevicius, V. Mecius, Heat Transfer in a Plasma Jet Reactor for Melting and Melt Fibrillation of Hard Ceramics, Heat Transfer Research 39 (2008) 609–618.

DOI: 10.1615/heattransres.v39.i7.50

Google Scholar

[13] Y. Gao, J. Qiu, D. Zhou, Investigation of optical properties: Eu with Al codoping in aluminum silicate glasses and glass-ceramics, Journal of the American Ceramic Society 100 (2017) 2901–2913.

DOI: 10.1111/jace.14807

Google Scholar

[14] R. Perekrestov, P. Kudrna, M. Tichý, I. Khalakhan, V.F. Myshkin, TiO2 nanoparticle detection by means of laser beam scattering in a hollow cathode plasma jet, Journal of Physics D: Applied Physics 49 (2016) 265201.

DOI: 10.1088/0022-3727/49/26/265201

Google Scholar

[15] V.F. Myshkin, V.G. Plekhanov, D.A. Izhoykin, V.A. Khan, Some Peculiarities of Spin Manifestation in Isotope Effects, Advanced Materials Research 1040 (2014) 360–366.

DOI: 10.4028/www.scientific.net/amr.1040.360

Google Scholar

[16] V.S. Bessmertnyi, A.V. Simachev, N.M. Zdorenko, I.V. Rozdol'skaya, N.I. Min'ko, N.I. Bondarenko, D.O. Bondarenko, Evaluation of the Competitiveness of Wall Building Materials with Glassy Protective-Decorative Coatings Obtained by Plasma Fusing, Glass and Ceramics 72 (2015).

DOI: 10.1007/s10717-015-9719-1

Google Scholar

[17] V.S. Bessmertnyi, N.I. Min'Ko, P.S. Dyumina, O.N. Sokolova, O.N. Bakhmutskaya, A.V. Simachev, Production of facing brick by plasma treatment using raw material from technogenic deposits, Glass and Ceramics 65 (2008) 16–18.

DOI: 10.1007/s10717-008-9013-6

Google Scholar

[18] V.S. Bessmertnyi, I.A. Ilyina, S.N. Zubenko, O.N. Sokolova, N.M. Zdorenko, N.I. Voloshko, Plasmochemical modifying of wall construction materials of autoclave curing, International magazine of experimental education 9 (2015) 119.

Google Scholar

[19] A.V. Lutsenko, N.K. Skripnikova, G.G. Volokitin, A.S. Turashev, Production of glass-crystalline materials from silicate-containing melts using low-temperature plasma, Vestnik of Tomsk State University of Architecture and Building 3 (2012)126–132.

Google Scholar

[20] Y.A. Abzaev, G.G. Volokitin, N.K. Skripnikova, O.G. Volokitin, V.V. Shekhovtsov, Investigation of the Melting of Quartz Sand by LowTemperature plasma, Glass and Ceramics 72 (2015) 225–227.

DOI: 10.1007/s10717-015-9761-z

Google Scholar

[21] O.G. Volokitin, M.A. Sheremet, V.V. Shekhovtsov, N.S. Bondareva, V.I. Kuzmin, Studying regimes of convective heat transfer in the production of high-temperature silicate melts, Thermophysics and Aeromechanics 23 (2016) 755–765.

DOI: 10.1134/s0869864316050140

Google Scholar

[22] O. Volokitin, V. Vlasov, G. Volokitin, N. Skripnikova, V. Shekhovtsov, Mathematical Modeling of Quartz Particle Melting Process in Plasma-Chemical Reactor, AIP Conference Proceedings 1698 (2016) 040013.

DOI: 10.1063/1.4937849

Google Scholar

[23] V.V. Shekhovtsov, O.G. Volokitin, The technology of obtaining microspheres of various structures basis of ash and slag wastes by the plasma method, Tekhnika i tekhnologiya silikatov 24 (2017) 2–6.

Google Scholar

[24] Yu.E. Pivinskii, A.G. Romashin, Quartz Ceramic, Metallurgiya, Moscow, 1974. (in Russian).

Google Scholar

[25] O.G. Volokitin, V.I. Vereshchagin, V.V. Shekhovtsov, Analysis of traditional and plasma melting of ash from CHPP, Izvestiya vysshikh uchebnykh zavedenii 58 (2015) 62–65.

Google Scholar

[26] G.G. Volokitin, N.K. Skripnikova, O.G. Volokitin, V.V. Shekhovtsov, A.I. Khaisundinov, Electric arc and electro plasma devices for the processing of silicatecontaining waste, Izvestiya vysshikh uchebnykh zavedenii 57 (2014) 109–113.

Google Scholar

[27] V.A. Vlasov, O.G. Volokitin, G.G. Volokitin, N.K. Skripnikova, V.V. Shekhovtsov, Calculation of the Melting Process of a Quartz Particle Under Low-Temperature Plasma, Journal of Engineering Physics and Thermophysics 89 (2016) 152–156.

DOI: 10.1007/s10891-016-1362-3

Google Scholar

[28] O.P. Solonenko, I.P. Gulyaev, A.V. Smirnov, Thermal plasma processes of hollow spherical powders hollow spherical powders: theory and experiment, Journal of Thermal Science and Technology 2 (2011) 219–234.

DOI: 10.1299/jtst.6.219

Google Scholar

[29] V. Shekhovtsov, O. Volokitin, G. Volokitin, N. Skripnikova, R. Gafarov, Plasma treatment of agglomerating aluminosilicate powders based on coal ash, AIP Conference Proceedings 1800 (2017) 020008.

DOI: 10.1063/1.4973024

Google Scholar

[30] V. Shekhovtsov, O. Volokitin, N. Tsvetkov, G. Volokitin, N. Skripnikova, Aluminosilicate Microsphere Synthesis in Plasma Flow, Materials Science Forum 906 (2017) 131–136.

DOI: 10.4028/www.scientific.net/msf.906.131

Google Scholar