Magnetic Nanocomposites Based on Opal Matrices

Article Preview

Abstract:

Features of obtaining magnetic nanocomposites based on the lattice packing of SiO2 nanoscale (opal matrices) with clusters of multiferroic materials (Li-Zn, Bi, Fe, Dy, Gd and Yb titanates) in their interstitial cavities have been considered. For magnetic nanocomposites creation opal matrices with SiO2 nanoscale of ~ 260 nm in diameter have been used. The composition of nanocomposites has been also studied using X-ray diffractometry and Raman spectroscopy. The results of the frequency dependences measurement for the dielectric constant of the nanostructures obtained have been presented. Hysteresis loops have been examined for the samples obtained in the temperature range from 2 to 400 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-154

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Tang, K. Hu, The formation of ilmenite FeTiO3 powders by a novel liquid mix and H2/H2O reduction process, Journal of materials science 41(23) (2006) 8025-8028.

DOI: 10.1007/s10853-006-0908-8

Google Scholar

[2] D.A. Kiselev, M.S. Afanasiev, S.A. Levashov, A.A. Sivov, G.V. Chucheva, Thickness dependence of electrical and piezoelectric properties of ferroelectric Ba0.8Sr0.2TiO3 thin films, Thin Solid Films 619 (2016) 214-219.

DOI: 10.1016/j.tsf.2016.10.064

Google Scholar

[3] S.T. Bramwell, M.N. Field, M.J. Harris, M.J. Ivan, Bulk magnetization of the heavy rare earth titanate pyrochlores - a series of model frustrated magnets, Journal of Physics Condensed Matter 12(4) (1999) 483.

DOI: 10.1088/0953-8984/12/4/308

Google Scholar

[4] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Amira, Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426 (2003) 55-58.

DOI: 10.1038/nature02018

Google Scholar

[5] A. Inomata, K. Kohn, Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5, Journal of Physics Condensed Matter 8(15) (1996) 2673-2678.

DOI: 10.1088/0953-8984/8/15/016

Google Scholar

[6] N.I. Lebedev, A.S. Sigov, Surface inhomogeneities and coercive field of thin ferroelectric films, Integrated Ferroelectrics 4(1) (1994) 21-24.

DOI: 10.1080/10584589408018656

Google Scholar

[7] M.I. Samoylovich, А.F. Belyanin, A.S. Bagdasarian, A.V. Rinkevich, S.A. Bagdasarian, V. Bovtun, Structure, optical, magnetic and dielectric properties of nanocomposites: opal matrices – titanates of rare-earth eltmtnts, Nanomaterials and Nanostructures – XXI Century 7(2) (2016).

DOI: 10.32362/2410-6593-2016-11-2-66-73

Google Scholar

[8] M.I. Samoylovich, А.F. Belyanin, A.S. Bagdasarian, V. Bovtun, Structure and dielectric properties of nanocomposites: opal matrices – titanium dioxide and titanates of rare-earth eltmtnts, Fine Chemical Nechnologies XI(2) (2016) 66-73 (in Russia).

DOI: 10.32362/2410-6593-2016-11-2-66-73

Google Scholar

[9] A.T. Raghavender, N.H. Hong, K.J. Lee, M.-H. Jung, Z. Skoko, M. Vasilevskiy, M.F. Cerqueira, A.P. Samantilleke, Nano-ilmenite FeTiO3: Synthesis and characterization, Journal of Magnetism and Magnetic Materials 331 (2013) 129-132.

DOI: 10.1016/j.jmmm.2012.11.028

Google Scholar

[10] M.I. Samoylovich, А.F. Belyanin, E.V. Schevchenko, E.V. Charnay, A.S. Bagdasarian, V.V. Odinokov, Structure, dielectric and magnetic properties of opal matrices with nanoparticles FeTiO3, Nanomaterials and Nanostructures – XXI Century 8(2) (2017).

Google Scholar

[11] P. Song, G.K. Li, L. Ma, C.M. Zhen, D.L. Hou, W.H. Wang, E.K. Liu, J.L. Chen, G.H. Wu, Magnetization jumps and exchange bias induced by a partially disordered antiferromagnetic state in (FeTiO3)0.9–(Fe2O3)0.1, Journal of applied physics 115 (2014) 213907.

DOI: 10.1063/1.4881527

Google Scholar