Modification of Strength Properties of Oxide Materials by Ion Irradiation

Article Preview

Abstract:

The effect of ion irradiation on the strength characteristics of magnesium oxide and ceramics based on zirconia is studied. The MgO samples were a single crystal grown in an artificial manner. Samples of zirconium ceramics were prepared by ceramic technology. Irradiation of MgO crystals was carried out by Si+ ions (E = 150 keV), Fe+ (E = 70 keV), C+ (E = 50 keV) at room temperature. The fluence varied within the range (1016–1017) сm–2. The modification of the investigated types of ceramics was carried out by ions Al+ (Е = 60 keV), Ar+ (Е= 60 keV), N+ (E = 50 keV). We used ion beams of microsecond duration and moderate power (the current density in the pulse was 3 10-3 A/cm2). Fluence was 1017 cm-2. The irradiation of the ceramics with an ion beam C+ (E = 50 keV) was also performed with nanosecond duration (τ = 50 ns). It is established that ionic irradiation of magnesium oxide leads to an increase in crack resistance and a critical stress intensity factor. Irradiation of ceramics leads to hardening of its near-surface layers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-75

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Surzhikov, E.A. Vasendina, E.N. Lysenko, Е.V. Nikolaev, Kinetics of phase formation in a Li2CO3-TiO2-Fe2O3 system during radiation-thermal synthesis, Inorganic Materials: Applied Research 5 (2014) 102-106.

DOI: 10.1134/s207511331402021x

Google Scholar

[2] Keyan Li, Hao Chen, Fenfen Shua, Kunfeng Chen, Dongfeng Xuе, Low temperature synthesis of Fe2O3 and LiFeO2 as cathode materials for lithium-ion batteries, Electrochimica Acta 136 (2014) 10-18.

DOI: 10.1016/j.electacta.2014.05.068

Google Scholar

[3] A.P. Surzhikov, A.M. Pritulov, E.N. Lysenko A.N. Sokolovskiy, V.A. Vlasov, E.A. Vasendina, Calorimetric investigation of radiation-thermal synthesized lithium pentaferrite, J. of Thermal Analysis and Calorimetry 101 (2010) 11-13.

DOI: 10.1007/s10973-010-0788-7

Google Scholar

[4] A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, A.M. Pritulov, O.G. Kazakovskaya, Influence of mechanical activation of initial reagents on synthesis of lithium ferrite, Russian Physics Journal 55 (2012) 672-677.

DOI: 10.1007/s11182-012-9865-7

Google Scholar

[5] S.A. Mazen, N.I. Abu-Elsaad, Characterization and magnetic investigations of germanium-doped lithium ferrite, Ceramics International 40 (2014) 11229-11237.

DOI: 10.1016/j.ceramint.2014.03.167

Google Scholar

[6] A.V. Malyshev, E.N. Lysenko, V.A. Vlasov, S.A. Nikolaeva, Electromagnetic properties of Li0.4Fe2.4Zn0.2O4 ferrite sintered by continuous electron beam heating, Ceramics International 42 (2016) 16180-16183.

DOI: 10.1016/j.ceramint.2016.07.137

Google Scholar

[7] S.A. Shevelev, P.A. Luchnikov, A.R. Yarullina, Influence of metallic additives on manganese ferrites sintering, IOP Conf. Ser.: Mater. Sci. Eng. 289 (2018) 1-4.

DOI: 10.1088/1757-899x/289/1/012016

Google Scholar

[8] S.N. Kulkov, Structure, phase composition and mechanical properties of ZrO2-based nanosystems, Physical Mesomechanics 11 (2008) 29-41.

DOI: 10.1016/j.physme.2008.03.004

Google Scholar

[9] A.S. Ivashutenko, N.V. Martyushev, I.G. Vidayev, K.S. Kostikov, Influence of Technological Factors on Structure and Properties of Alumina-Zirconia Ceramics, Advanced Materials Research 1040 (2014) 845–849.

DOI: 10.4028/www.scientific.net/amr.1040.845

Google Scholar

[10] S.N. Kulkov, Structural transformations in nanocrystalline zirconium dioxide, Journal of Surface Investigation 6(3) (2012) 413-415.

Google Scholar

[11] Patent 2076069, C01G25/02 (Russia) Dorda F A, Dedov N V, Korobtsev V P, Stepanov I A, Utkin S V, Publ. 27.03.(1997).

Google Scholar

[12] M. Mazaheri, A. Simchi, F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering, Journal of the European Ceramic Society 28 (2008) 2933-2939.

DOI: 10.1016/j.jeurceramsoc.2008.04.030

Google Scholar

[13] S.A. Akarachkin, Yu.M. Annenkov, A.S. Ivashutenko, The mechanism of spark plasma sintering of ceramics, Butlerov Communications 31 (2012) 130–137.

Google Scholar

[14] A.I. Slosman, S.V. Martenin, Electric discharge sintering of ceramics based on zirconium dioxide, Refractories 35 (1994) 296-297.

DOI: 10.1007/bf02227281

Google Scholar

[15] V.V. Smirnov, T.O. Obolkina, A.I. Krylov, S.V. Smirnov, M.A. Gol'dberg, O.S. Antonova, D.D. Titov, S.M. Barinov, Agglomeration and Properties of Ceramics Based on Partially Stabilized Zirconium Dioxide Containing Oxides of Aluminum and Iron, Inorg. Mater. Appl. Res. 9 (2018).

DOI: 10.1134/s2075113318010252

Google Scholar

[16] A.J. Flegler, T.E. Burye, Qing Yang, J.D. Nicholas, Cubic yttria stabilized zirconia sintering additive impacts: A comparative study, Ceramics International 40 (2014) 16323-16335.

DOI: 10.1016/j.ceramint.2014.07.071

Google Scholar

[17] V.V. Smirnov, A.I. Krylov, S.V. Smirnov, M.A. Goldberg, O. S. Antonova, L. I. Shvorneva, S. M. Barinov, Study of liquid-phase sintering of materials based on zirconium dioxide containing alumina, Inorg. Mater. Appl. Res. 8 (2017) 81-83.

DOI: 10.1134/s2075113317010373

Google Scholar

[18] A.P. Surzhikov, E.N. Lysenko, S.A. Gyngazov, T.S. Frangulyan, S.A. Lamonova, Effect of ion-plasma treatment on oxidation–reduction processes in lithium-titanium-zinc ferrites, IOP Conf. Series: Materials Science and Engineering 81 (2015) 1-5.

DOI: 10.1088/1757-899x/81/1/012081

Google Scholar

[19] V. Vashook, J. Rebello J.Y. Chen, L. Vasylechko, D. Trots, J. Zosel, U. Guth, Thermal Expansion, Oxygen Non-Stoichiometry and Diffusion Mobility in some Ferrites-Nickelites, Solid State Phenomena 200 (2013) 86-92.

DOI: 10.4028/www.scientific.net/ssp.200.86

Google Scholar

[20] V.B. Vert, J.M. Serra, Influence of Barium Incorporation on the Electrochemical Performance of Ln0.58Sr0.4Fe0.8Co0.2O3–δ (Ln=La, Pr, Sm) Perovskites for Oxygen Activation at Intermediate Temperatures, Fuel Cells. 9 (2009) 663-678.

DOI: 10.1002/fuce.200900017

Google Scholar

[21] U.V. Ancharova, S.V. Cherepanova, S.A. Petrov, Adaptation ways for a high concentration oxygen vacancies in nonstoichiometric strontium ferrites, J Struct. Chem. 58 (2017) 53-61.

DOI: 10.1134/s0022476617010085

Google Scholar

[22] M.V. Patrakeev, E.B. Mitberg, A.A. Lakhtin, I.A. Leonidov, V.L. Kozhevnikov, V.V. Kharton, M.F. Avdeev, M.B. Marques, Oxygen Nonstoichiometry, Conductivity, and Seebeck Coefficient of La0.3Sr0.7Fe1−xGaxO2.65+δ Perovskites, Journal of Solid State Chemistry 167 (2002).

DOI: 10.1006/jssc.2002.9644

Google Scholar

[23] A.P. Surzhikov, T.S. Frangulyan, S.A. Ghyngazov, E.N. Lisenko, O.V. Galtseva, Investigation of electroconductivity of lithium pentaferrite, Russian Physics Journal 49 (2006) 506-510.

DOI: 10.1007/s11182-006-0133-6

Google Scholar

[24] B. Schmidt, K. Wetzig, Ion Beams in Materials Processing and Analysis, Springer Verlag, Germany, (2013).

Google Scholar

[25] V.V. Ovchinnikov, N.V. Gushchina, T.M. Gapontseva, T.I. Chashchukhina, L.M. Voronova, V.P. Pilyugin, M.V. Degtyarev, Optimal deformation and ion irradiation modes for production of a uniform submicrograin structure in molybdenum, High Pressure Research 35 (2015).

DOI: 10.1080/08957959.2015.1041522

Google Scholar

[26] H.A. Davis, G.E. Remnev, B.W. Stinnett, K. Yatsui, Intense ion-beam treatment of materials, MRS Bulletin 21 (1996) 58–62.

DOI: 10.1557/s0883769400035739

Google Scholar

[27] W. Elke, W. Werner, Ion Beam Modification of Solids, Springer Series in Surface Sciences, (2016).

Google Scholar

[28] N.V. Gushchina, V.V. Ovchinnikov, F.F. Makhin'ko, S.A. Linnik, Effect of ion beam treatment (Ar+, e = 30 keV) on the microstructure of titanium alloys, J. Phys.: Conf. Ser. 830 (2017) 1-6.

DOI: 10.1088/1742-6596/830/1/012089

Google Scholar

[29] A.Ya. Leyvi, K.A. Talala, V.S. Krasnikov, A.P. Yalovets, Modification of the Constructional Materials with the Intensive Charged Particle Beams and Plasma Flows, Herald South Ural State University. 16 (2016) 28–55 (in Russian).

DOI: 10.14529/engin160103

Google Scholar

[30] V.V. Ovchinnikov, G.E. Remnev, N.V. Gushchina, V.I. Gusel'nikov, S.M. Mozharovskii, A.V. Filippov, L.I. Kaigorodova, Changes in microstructure of cold-worked aluminum-lithium alloy 1441 initiated by powerful pulsed ion beams, Russ. J. Non-ferrous Metals 52 (2011).

DOI: 10.3103/s1067821211030175

Google Scholar

[31] T. Grosdidier, J.X. Zou, N. Stein, C. Boulanger, S.Z. Haoc, C. Dong, Texture modification, grain refinement and improved hardness/corrosion balance of a FeAl alloy by pulsed electron beam surface treatment in the "heating mode, Scripta Materialia 58 (2008).

DOI: 10.1016/j.scriptamat.2008.01.052

Google Scholar

[32] A.K. Kuleshov, A.S. Yakushevich, V.V. Uglov, V.M. Astashinskii, N.N. Koval', Yu.F. Ivanov, E.A. Krutilina, Microstructure, heat transfer, and melting of the layers of hard alloy containing titanium and tungsten carbides in conditions of high-power pulsed treatment, Russ. J. Non-ferrous Metals 56 (2015).

DOI: 10.3103/s1067821215030116

Google Scholar

[33] V.E. Gromov, S.V. Gorbunov, Y.F. Ivanov, S.V. Vorobiev, S.V. Konovalov, Formation of surface gradient structural-phase states under electron-beam treatment of stainless steel, J. Synch. Investig. 5 (2011) 974.

DOI: 10.1134/s1027451011100107

Google Scholar

[34] Yu.F. Ivanov, S.V. Karpii, M.M. Morozov, Structure, Phase Compound and Properties of Titanium after Electric Explosion Alloying and Electronic Beam Processing, Novokuznetsk, 2010 (in Russian).

Google Scholar

[35] I.P. Chernov, N.S. Pushilina, E.V. Berezneeva, A.M. Lider, S.V. Ivanova, Influence of hydrogen on the properties of Zr-1%Nb alloy modified by a pulsed electron beam, Tech. Phys. 58 (2013) 1280-1283.

DOI: 10.1134/s1063784213090107

Google Scholar

[36] V.E. Gromov, S. V. Vorob'ev, V.V. Sizov, S.V. Konovalov, Y.F. Ivanov, Increasing the fatigue life of steel and alloys by electron-beam treatment, Steel in Translation. 45 (2015) 322-325.

DOI: 10.3103/s0967091215050046

Google Scholar

[37] V.E. Kormyshev, Y.F. Ivanov, V.E. Gromov, S.V. Konovalov, A.D. Teresov, Nanohardness of wear-resistant surfaces after electron-beam treatment, Steel Transl. 47 (2017) 245-249.

DOI: 10.3103/s0967091217040040

Google Scholar

[38] S.A. Ghyngazov, I.P. Vasil'ev, A.P. Surzhikov, T.S. Frangulyan, A.V. Chernyavskii, Ion processing of zirconium ceramics by high-power pulsed beams, Technical Physics 60 (2015) 128-132.

DOI: 10.1134/s1063784215010120

Google Scholar

[39] K.B. Kuznetsov, I.A. Kovalev, A.N. Nechaev, A. I. Ogarkov, S.V. Shevtsov, A.S. Chernyavskii, K.A. Solntsev, Stability of the structure of compact zirconium nitride ceramics to irradiation with high-energy xenon ions, Inorg Mater. 52 (2016).

DOI: 10.1134/s0020168516120062

Google Scholar

[40] D.A. Zatsepin, I.C. Waistein, S.O. Cholakh, Ion Modification of Functional Materials, Ekaterinburg: GOU HPE URFU, 2014. (in Russian).

Google Scholar

[41] V. Kostenko, S. Pavlov, S. Nikolaeva, Influence of a high-power pulsed ion beam on the mechanical properties of corundum ceramics, IOP Conf. Ser.: Mater. Sci. Eng. 289 (2018) 1-7.

DOI: 10.1088/1757-899x/289/1/012019

Google Scholar

[42] S.A. Maslyaev, E.V. Morozov, P.A. Romakhin, V.N. Pimenov, V.A. Gribkov, A.N. Tikhonov, G.G. Bondarenko, A.V. Dubrovsky, E.E. Kazilin, I.P. Sasinovskaya, O.V. Sinitsyna, Damage of Al2O3 ceramics under the action of pulsed ion and plasma fluxes and laser irradiation, Inorganic Materials: Applied Research 3 (2016).

DOI: 10.1134/s2075113316030151

Google Scholar

[43] G.E. Remnev, I.F. Isakov, A.I. Pushkarev, High intensity pulsed ion beam sources and their industrial applications, in: Surface and Coatings Technology 114 (1999) 206-212.

DOI: 10.1016/s0257-8972(99)00058-4

Google Scholar