[1]
Information on http://web.mit.edu/dlizardo/www/UniaxialTestingLabReportV6.pdf.
Google Scholar
[2]
R Rajeshbabu, U Gohs, K Naskar, V Thakur, U Wagenknecht, G Heinrich, Preparation of Polypropylene (PP)/Ethylene Octene Copolymer (EOC) Thermoplastic Vulcanizates (Tpvs) by High Energy Electron Reactive Processing, Radiation Physics and Chemistry 80(12) 1398-1405.
DOI: 10.1016/j.radphyschem.2011.07.001
Google Scholar
[3]
G.H. Vineyard, Radiation Damage in Solids, Billington, London, (1962).
Google Scholar
[4]
N.A. Voronova, A.I. Kupchishin, M.N. Niyazov, V.M. Lisitsyn, Uniaxial Stress and Electron Irradiation Effects on Nanochains Straightening in Film Polymer Materials, Key Engineering Materials 769 (2018) 78-83.
DOI: 10.4028/www.scientific.net/kem.769.78
Google Scholar
[5]
S. Ikeda, Y. Tabata, H. Suzuki, T. Miyoshi, Y. Katsumura, Formation of Cross linked PTFE by Radiation-Induced Solid-state Polymerization of Tetrafluoroethylene at Low Temperatures, Rad. Phys. Chem. 77(9) (2008) 401-408.
DOI: 10.1016/j.radphyschem.2007.05.014
Google Scholar
[6]
V.A. Ivchenko, Atomic structure of cascades of atomic displacements in metals and alloys after different types of radiation, IOP Conf. Series: Materials Science and Engineering 110 (2016) 012003.
DOI: 10.1088/1757-899x/110/1/012003
Google Scholar
[7]
M.S. Khan, D. Lehmann, G. Heinrich, Physical and tribological properties of the modified PTFE nanopowder filled EPDM, e. Pol. Let. 2(4) (2008) 284-293.
Google Scholar
[8]
U. Lappan, U. Geißler, K. Lunkwitz, Changes in the chemical structure of polytetrafluoroethylene induced by electron beam irradiation in the molten state, Radiat. Phys. Chem. 59 (2000) 317–322.
DOI: 10.1016/s0969-806x(00)00269-3
Google Scholar
[9]
A.I. Kupchishin, B.G. Taipova, A.A. Kupchishin, N.A. Voronova, V.I. Kirdyashkin, T.V. Fursa, Catastrophic models of materials destruction, IOP Conf. Series: Material Science and Engineering 110 (2016) 012037.
DOI: 10.1088/1757-899x/110/1/012037
Google Scholar
[10]
N.A. Voronova, A.I. Kupchishin, B.G. Taipova, Nanoclusters and Electron Irradiation Effect on Mechanical Properties of Polyimide-Based Composite, Key Engineering Materials 769 (2018) 72-77.
DOI: 10.4028/www.scientific.net/kem.769.72
Google Scholar
[11]
A.P. Surzhikov, A.M. Pritulov, E.N. Lysenko, A.N. Sokolovskii, V.A. Vlasov, E.A. Vasendina, Influence of solid-phase ferritization method on phase composition of lithium-zinc ferrites with various concentration of zinc, Journal of Thermal Analysis and Calorimetry 109(1) (2012) 63-67.
DOI: 10.1007/s10973-011-1366-3
Google Scholar
[12]
A.P. Surzhikov, T.S. Frangulyan, S.A. Ghyngazov, E.N. Lisenko, O.V. Galtseva, Physics of magnetic phenomena: Investigation of electroconductivity of lithium pentaferrite, Russian Physics Journal 49(5) (2006) 506-510.
DOI: 10.1007/s11182-006-0133-6
Google Scholar
[13]
K.U. Naskar, U. Gohs, G. Heinrich, U. Wagenknecht, PP-EPDM thermoplastic vulcanisates (TPVs) by electron induced reactive processing, Express Polymer Let 3 (2009) 677-683.
DOI: 10.3144/expresspolymlett.2009.85
Google Scholar
[14]
R. Rajeshbabu, U. Gohs, K. Naskar V. Thakur, U. Wagenknecht, G. Heinrich, Preparation of Polypropylene (PP)/Ethylene Octene Copolymer (EOC) Thermoplastic Vulcanizates (Tpvs) by High Energy Electron Reactive Processing, Radiation Physics and Chemistry 80(12) (2011).
DOI: 10.1016/j.radphyschem.2011.07.001
Google Scholar
[15]
K.L. Walton, Metallocene catalysed ethylene/alpha olefin copolymers used in thermoplastic elastomers, Rubber Chemistry and Technology 77 (2004) 552-568.
DOI: 10.5254/1.3547836
Google Scholar
[16]
T. McNally, P. McShane, G.M. Nally, W.R. Murphy, M. Cook, A. Miller, Reology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1-octene copolymer blends, Polymer 43 (2002) 3785-3793.
DOI: 10.1016/S0032-3861(02)00170-2
Google Scholar
[17]
A.L.N. Da Silva, M.C.R. Rocha, F.M.B. Coutinho, B. Rosario, C. Scuracchio, Rheological, mechanical, thermal, and morphological properties of polypropylene/ethylene-octene copolymer blends, Journal of Applied Polymer Science 75(5) (2000) 692-704.
DOI: 10.1002/(sici)1097-4628(20000131)75:5<692::aid-app12>3.0.co;2-y
Google Scholar
[18]
M. Van Duin, Recent developments for EPDM-based thermoplastic vulcanisates. Macromolecular Symposia 233(1) (2006) 11-16.
DOI: 10.1002/masy.200690006
Google Scholar
[19]
K. Naskar, K. Chatterjee, Development of thermoplastic elastomers based on maleated ethylene propylene rubber and polypropylene by dynamic vulcanization, Express Polymer Letters 1(8) (2007) 527-534.
DOI: 10.3144/expresspolymlett.2007.75
Google Scholar
[20]
S-M. Lai, F-C. Chin, T-Y. Chiu, Fracture behaviors of PP/mPE thermoplastic vulcanizate via peroxide crosslinking. European Polymer Journal 41 (2005) 3031-3041.
DOI: 10.1016/j.eurpolymj.2005.06.003
Google Scholar
[21]
R.R. Babu, N.K. Singha, K. Naskar, Studies on the influence of structurally different peroxides in polypropylene/ethylene alpha olefin thermoplastic vulcanizates (TPVs) Express Polymer Letters 2(3) (2008) 226-236.
DOI: 10.3144/expresspolymlett.2008.27
Google Scholar
[22]
K. Matsuura, H. Saito, Tensile properties and interfacial adhesion of silicone rubber/polyethylene blends by reactive blending, Inc. J. Appl. Polym. Sci 135 (2018) 46192.
DOI: 10.1002/app.46192
Google Scholar
[23]
J.S. Borah, I.K. Kang, C. Nah, T.K. Chaki, Effect of controlled peroxide curing on the dynamic and capillary rheology of LLDPE/EMA/Clay nanocomposites, Polymer Composites 38(12) (2016) 2814-2821.
DOI: 10.1002/pc.23881
Google Scholar
[24]
W. Zhigao, Zh. Xinghai, W. Fangqiang, L. Xinsheng, Chemical characterization and research on the silicone rubber material used for outdoor current transformer insulation, Phosphorus, Sulfur, and Silicon and the Related Elements 192(1) (2017).
DOI: 10.1080/10426507.2016.1231189
Google Scholar