Interaction of External Acoustic Waves - Confined Electrons - Internal Phonons in a Cylindrical Quantum Wire with an Infinite Potential in the Presence of an External Magnetic Field

Article Preview

Abstract:

Interaction of external acoustic waves - confined electrons - internal phonons in a cylindrical quantum wire with an infinite potential (CQWIP) has been theoretically studied via the quantum kinetic equation for electrons in the presence of an external magnetic field (EMF). The quantum kinetic equation for the distribution function of electrons interacting with internal and external acoustic phonons is obtained from the Heisenberg equation of motion and the model of CQWIP. The density of acoustomagnetoelectric (AME) current and the analytical expressions for the AME field in the CQWIP in the presence of the EMF are obtained. The theoretical results are numerically evaluated for the specific CQWIP of GaAs/GaAsAl. It is shown that the AME field strongly depends on the system temperature in both cases of the strong magnetic field and the weak magnetic field. However, the graph showing the relationship between the AME field and the system temperature has the peaks in case of the strong magnetic field. The reason may be due to movement of the electrons between the mini-bands. The AME field obtained in this work are then compared with those of bulk semiconductors, superlattices, quantum wells (QW) and rectangular quantum wire (RQW).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-72

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. E. Lawrence and K. Sarabandi, Acoustic and electromagnetic wave interaction: analytical formulation for acousto-electromagnetic scattering behavior of a dielectric cylinder, IEEE Trans. Antenna. Propagat. 49 (2001) 1382.

DOI: 10.1109/8.954927

Google Scholar

[2] V. A. Geyler and V. A. Margulis, Quantization of the conductance of a three-dimensional quantum wire in the presence of a magnetic field, Phys. Rev. B 61 (2000) 1716.

DOI: 10.1103/physrevb.61.1716

Google Scholar

[3] J. Cunningham, M. Pepper, V. I. Talyanskii and D. A. Ritchie, Acoustoelectric current in submicron-separated quantum wires, Appl. Phys. Lett. 86 (2005) 152105.

DOI: 10.1063/1.1897050

Google Scholar

[4] E. M. Epshtein and Y. V. Gulyaev, Sov. Phys. Sol. State. 9 (1967) 288.

Google Scholar

[5] E. M. Epshtein, JETP Lett. 19 (1974) 332.

Google Scholar

[6] M. Kogami and S. Tanaka, Acoustomagnetoelectric and acoustoelectric effects in n-InSb at low temperatures, J. Phys. Soc. Japan 30 (1971) 775.

DOI: 10.1143/jpsj.30.775

Google Scholar

[7] G. M. Shmelev, G. I. Tsurkan and N. Q. Anh, Photostimulated planar acoustomagnetoelectric effect in semiconductors, Phys. Stat. Sol. 121 (1984) 97.

DOI: 10.1002/pssb.2221210168

Google Scholar

[8] A. D. Margulis and V. A. Margulis, The quantum acoustomagnetoelectric effect due to Rayleigh sound waves, J. Phys. 6 (1994) 6139.

DOI: 10.1088/0953-8984/6/31/013

Google Scholar

[9] Y. Zhang, K. Suenaga, C. Colliex and S. Iijima, Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon, Science. 281 (1998) 973.

DOI: 10.1126/science.281.5379.973

Google Scholar

[10] S. S. Rink, D. S. Chemla and D. B. Miller, Linear and nonlinear optical properties of semiconductor quantum wells, Adv. Phys. 38 (1989) 89.

DOI: 10.1080/00018738900101102

Google Scholar

[11] S. Y. Mensah and F. K. A. Allotey, Acoustomagnetoelectric effect in a superlattice, J. Phys. Condens. Matter. 8 (1996) 1235.

DOI: 10.1088/0953-8984/8/9/014

Google Scholar

[12] N. Q. Bau, N. V. Hieu and N. V. Nhan, The quantum acoustomagnetoelectric field in a quantum well with a parabolic potential, Superlatt. Microstruct. 52 (2012) 921.

DOI: 10.1016/j.spmi.2012.07.023

Google Scholar

[13] K. A. Dompreh, S. Y. Mensah, S. S. Abukari, R. Edziah, N. G. Mensha and H. A. Quaye, Nanos. Syst.: Math. Model. Theor. Appl. 4 (2015) 2299.

Google Scholar

[14] F. O. Yoshiko, K. Kimura and K. Sugihara, Phys. B+C. 105 (1981) 103.

Google Scholar

[15] N. V. Nhan, N. V. Nghia and N. V. Hieu, The dependence of a quantum acoustoelectric current on some qualities in a cylindrical quantum wire with an infinite potential GaAs/GaAsAl, Mater. Trans. 56 (2015) 1408.

DOI: 10.2320/matertrans.ma201514

Google Scholar

[16] N. Q. Bau and N. V. Nghia, World Acad. Sci., Eng. Tech. Int. J. Nucl. Quant. Eng. 10 (2016) 87.

Google Scholar

[17] H. D. Trien and N. V. Nhan, The nonlinear absorption of a strong electromagnetic waves caused by confined electrons in a cylindrical quantum wire, J. USA-PIER Lett. 20 (2011) 87.

DOI: 10.2528/pierl10110910

Google Scholar

[18] H. Heon and N. S. Harold, Exciton linewidth due to scattering by polar optical phonons in semiconducting cylindrical quantum wire structures, Phys. Rev. B 62 (2000) 13599.

DOI: 10.1103/physrevb.62.13599

Google Scholar