Fabrication of the Anode Supported Solid Oxide Fuel Cells by Tape-Casting Process and Infiltration Method

Article Preview

Abstract:

The hydrogen is promising energy carrier due to its high energy density, convenient transportation, eternal sources in the earth and cleanness. Solid oxide fuel cells (SOFCs) have not been commercialized yet even though it has been studied for decades. The issues about solid oxide fuel cells are manufacturing process and electrochemical performance. Tape-casting process has an advantage of cost reduction for mass production. it is reported that infiltration improves electrochemical performance of SOFCs by enhancing the three phase boundary (TPB) and porosity. To fabricate the electrode with porous scaffold structure for infiltration, pore formers were added in the tape-casting slurry. In this study, four types of mixtures of several pore formers such as carbon black, graphite, poly methyl methacrylate and glassy carbon were estimated. Micro structure of each type is investigated through scanning electron microscope (SEM). The thickness of the unit cell manufactured by tape-casting is in the range of 200 - 250 μm. The fabricated unit cell with carbon black and glassy carbon shows the open circuit voltage 1.07 V at 800°C. As a result of the study, mixed ratio of pore formers was researched for Solid Oxide Fuel Cells manufacturing process applied by tape-casting and infiltration method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-87

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. P. S. Shaikh, A. Muchtar, M. R. Somalu, A review on the selection of anode materials for solid-oxide fuel cells, Re Renew. Sustain. Energ. Rev. 51 (2015) 1-8.

Google Scholar

[2] P. Kim-Lohsoontorn, J. Bae, Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coelectrolysis of steam and carbon dioxide, J. Power Sour. 196 (2011) 7161-7168.

DOI: 10.1016/j.jpowsour.2010.09.018

Google Scholar

[3] J. Guan, M. Nguyen, R. Badri, R. James, J. K. Hong, R. Patrick, D. Weng, High Performance Flexible Reversible Solid Oxide Fuel Cell in: Final Technical Report GE Global Research Center (2006).

DOI: 10.2172/899650

Google Scholar

[4] C. Yang, Z. Yang, C. Jin, G. Xiao, F. Chen, M. Han, Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells, Adv. Mater. 24 (2012) 1439-1443.

DOI: 10.1002/adma.201104852

Google Scholar

[5] S. Park, R. J. Gorte, J. M. Vohs, Tape Cast Solid-Oxide Fuel Cells for the Direct Oxidation of Hydrocarbons, J. Electrochem. Soc. 148 (2001) A443-A447.

DOI: 10.1149/1.1362538

Google Scholar

[6] S. Lee, K. Lee, Y. -h. Jang, J. Bae, Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique, Int. J. Hydr. Energ. 42 (2017) 1648-1660.

DOI: 10.1016/j.ijhydene.2016.07.066

Google Scholar

[7] A. R. Hanifi, M. A. Laguna-Bercero, T. H. Etsell, P. Sarkar, The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes, Int. J. Hydr. Energ. 39 (2014) 8002-8008.

DOI: 10.1016/j.ijhydene.2014.03.071

Google Scholar

[8] B. Y. Yoon, J. Bae, Characteristics of nano La0. 6Sr0. 4Co0. 2Fe0. 8O3−δ-infiltrated La0. 8Sr0. 2Ga0. 8Mg0. 2O3−δ scaffold cathode for enhanced oxygen reduction, Int. J. Hydr. Energy, 38 (2013) 13399-13407.

DOI: 10.1016/j.ijhydene.2013.07.087

Google Scholar

[9] B. Y. Yoon, J. H. Kim, J. Bae, Effects of infiltrated Sr and Mn doped LaCrO3 on porous La0. 8Sr0. 2Ga0. 8Mg0. 2O3-δ scaffolds used as anodes in solid oxide fuel cells, Sol. State Ion. 249-250 (2013) 26-33.

DOI: 10.1016/j.ssi.2013.07.007

Google Scholar

[10] W. Schafbauer, N. H. Menzler, H. P. Buchkremer, Tape Casting of Anode Supports for Solid Oxide Fuel Cells at Forschungszentrum Jülich, Int. J. Appl. Ceram. Tech. 11 (2014) 125-135.

DOI: 10.1111/j.1744-7402.2012.02839.x

Google Scholar

[11] Y. Kwon, D. Kim, J. Bae. Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell, J. KIMST, 20 (2017) 491-496.

Google Scholar

[12] B. Y. Yoon, J. Bae, Electrochemical Investigation of Composite Nano La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ Infiltration into LSGM Scaffold Cathode on LSGM Electrolyte, ECS Trans. 57 (2013) 1933-(1943).

DOI: 10.1149/05701.1933ecst

Google Scholar

[13] H. S. Noh, J. Hong, H. Kim, K. J. Yoon, B. K. Kim, H. W. Lee, J. H. Lee, J. W. Son, Scale-Up of Thin-Film Deposition-Based Solid Oxide Fuel Cell by Sputtering, a Commercially Viable Thin-Film Technology, J. Electroche. Soc. 163 (2016) F613-F617.

DOI: 10.1149/2.0331607jes

Google Scholar

[14] Y. Gong, D. Palacio, X. Song, R. L. Patel, X. Liang, X. Zhao, J. B. Goodenough, K. Huang, Stabilizing Nanostructured Solid Oxide Fuel Cell Cathode with Atomic Layer Deposition, Nano Lett. 13 (2013) 4340-4345.

DOI: 10.1021/nl402138w

Google Scholar

[15] J. Karczewski, B. Bochentyn, S. Molin, M. Gazda, P. Jasinski, B. Kusz, Solid oxide fuel cells with Ni-infiltrated perovskite anode, Sol. State Ion. 221 (2012) 11-14.

DOI: 10.1016/j.ssi.2012.06.002

Google Scholar

[16] E. Ruiz-Trejo, A. Atkinson, N. P. Brandon, Metallizing porous scaffolds as an alternative fabrication method for solid oxide fuel cell anodes, J. Power Sour. 280 (2015) 81-89.

DOI: 10.1016/j.jpowsour.2015.01.091

Google Scholar

[17] Y. Zheng, C. Zhang, R. Ran, R. Cai, Z. Shao, D. Farrusseng, A new symmetric solid-oxide fuel cell with La0. 8Sr0. 2Sc0. 2Mn0. 8O3-δ perovskite oxide as both the anode and cathode, Acta Mater. 57 (2009) 1165-1175.

DOI: 10.1016/j.actamat.2008.10.047

Google Scholar

[18] H. N. D. Y. Using Flixweed Seed as a Pore-former to Prepare Porous Ceramics, J. Mater. Sci. Eng. 5 (2016) 1-4.

Google Scholar

[19] M. Boaro. J. M. Vohs. R. J. Gorte. Synthesis of Highly Porous Yttria-Stabilized Zirconia by Tape-Casting Methods, J. Am. Ceram. Soc. 86 (2003) 395-400.

DOI: 10.1111/j.1151-2916.2003.tb03311.x

Google Scholar

[20] J. Jeong, A. K. Azad, H. Schlegl, B. Kim, S. -W. Baek, K. Kim, H. Kang, J. H. Kim, Structural, thermal and electrical conductivity characteristics of Ln0. 5Sr0. 5Ti0. 5Mn0. 5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell, J. Sol. State Chem. 226 (2015).

DOI: 10.1016/j.jssc.2015.02.001

Google Scholar

[21] K. Lee, J. Kang, J. Lee, S. Lee, J. Bae, Evaluation of metal-supported solid oxide fuel cells (MS-SOFCs) fabricated at low temperature (~1,000 °C) using wet chemical coating processes and a catalyst wet impregnation method, Int. J. Hydr. Energy, 43 (2018).

DOI: 10.1016/j.ijhydene.2018.01.027

Google Scholar

[22] T. E. Wilkes, J. Y. Pastor, J. Llorca, K. T. Faber, Mechanical properties of wood-derived silicon carbide aluminum-alloy composites as a function of temperature, J. Mater. Res. 23 (2011) 1732-1743.

DOI: 10.1557/jmr.2008.0197

Google Scholar

[23] M. S. Khan, S. -B. Lee, R. -H. Song, J. -W. Lee, T. -H. Lim, S. -J. Park, Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review, Ceram. Int. 42 (2016).

DOI: 10.1016/j.ceramint.2015.09.006

Google Scholar

[24] T. Klemensø, C. Chung, P. H. Larsen, M. Mogensen, The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs, J. Electrochem. Soc. 152 (2005) A2186-A2192.

DOI: 10.1149/1.2048228

Google Scholar

[25] T. L. Cable, S. Sofie, A symmetrical, planar SOFC design for NASA's high specific power density requirements, (2007).

DOI: 10.1016/j.jpowsour.2007.08.110

Google Scholar

[26] M. Kishimoto, K. Miyawaki, H. Iwai, M. Saito, H. Yoshida, Effect of Composition Ratio of Ni-YSZ Anode on Distribution of Effective Three-Phase Boundary and Power Generation Performance, Fuel Cells, 13 (2013) 476-486.

DOI: 10.1002/fuce.201200174

Google Scholar