Oxide Ceramic Nano/Microfibers Prepared by Needle-Less Electrospinning - Materials for Fiber Reinforced Composites

Article Preview

Abstract:

Nano/microfibers are already widely used as the reinforcements in various types of advanced composites for reducing weight, improving specific properties like hardness, fracture toughness and other mechanical ones. This contribution describes the preparation of the titanium dioxide nano/microfibers by needle-less electrospinning, along with a detailed characterization of the obtained polycrystalline ceramics. For spinning solutions preparation the polyvinylpyrrolidone (PVP), titanium isopropoxide (TTIP), ethanol and acetic acid were used. Influence of the ceramic precursor concentration in the spinning solution showed that decreasing the concentration of TTIP from 30 to 10 wt.% has no effect on the precursor polymer fibers shape. However, it causes deviation from the fibers oval shape (in the cross-section) up to the formation of solid ribbons or even multilayered porous ribbons. Heat treatment temperature defined the phase composition of the obtained oxide ceramics – stabile polycrystalline rutile fibers were obtained at 600 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-119

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Erden, K. Sever, Y. Seki, M. Sarikanat, Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification, Fibers. Polym. 11 (2010) 732-737.

DOI: 10.1007/s12221-010-0732-2

Google Scholar

[2] S. Prashanth, K.M. Subbaya, K. Nithin, S. Sachhidananda, Fiber Reinforced Composites - A Review, J Material Sci. Eng. 6 (2017) 341.

Google Scholar

[3] S. Bagherpour, Fibre Reinforced Polyester Composites, in: Hosam El-Din M. Saleh (Ed.), Polyester, InTech (2012),135-166.

DOI: 10.5772/48697

Google Scholar

[4] C. M. Yang et al, Effect of ZnO/TiO2Nanorods Fabricated Using the Electrospinning Method in Y-Ba-Cu-O Single Grain Bulk Superconductors, IEEE Trans. Appl. Supercond. 27 (2017) 1-4.

DOI: 10.1109/tasc.2016.2625760

Google Scholar

[5] E. Mudra, M. Streckova, D. Pavlinak, V. Medvecka, D. Kovacik, A. Kovalcikova, P. Zubko, V. Girman, Z. Dankova, V. Koval, J. Duzsa, Development of Al2O3electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination, Appl. Surf. Sc. 415 (2017).

DOI: 10.1016/j.apsusc.2016.11.162

Google Scholar

[6] A.M. Azad, Fabrication of transparent alumina (Al2O3) Nanofibers by electrospinning, Mater. Sci. Eng. A 435-436 (2006) 468-473.

DOI: 10.1016/j.msea.2006.07.075

Google Scholar

[7] H. Wu, W. Pan, D. Lin, H. Li, Electrospinnig of ceramic Nanofibers: Fabrication, assembly and applications, J. Adv. Ceram. 1 (2012) 2-23.

Google Scholar

[8] D. Li, Y. Xia, Fabrication of Titania Nanofibers by Electrospinning, Nano Lett. 3 (2003)555-560.

DOI: 10.1021/nl034039o

Google Scholar

[9] O. Jirsak, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, J. Chaloupek, A method of nanofibers production from a polymer solution using electrostatic spinning and a device for carrying out the method, WO 2005/024101 A1., (2005).

Google Scholar

[10] O. Jirsak, P. Sysel, F. Sanetrnik, J. Hruza, J. Chaloupek, Polyamic acid nanofibers produced by needleless electrospinning, J. Nanomater. 2010 (2010) 1-6.

DOI: 10.1155/2010/842831

Google Scholar

[11] K. Nakata, T. Ochiai, T. Murakami, A. Fujishima, Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications, Electrochimica Acta 84 (2012) 103–111.

DOI: 10.1016/j.electacta.2012.03.035

Google Scholar

[12] S. Mishra, S.P. Ahrenkiel, Synthesis and Characterization of Electrospun Nanocomposite TiO2 Nanofibers with Ag Nanoparticles for Photocatalysis Applications, Journal of Nanomaterials (2012) 902491.

DOI: 10.1155/2012/902491

Google Scholar

[13] M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C4 (2003) 145–153.

Google Scholar

[14] Y. Zhang, Y. Tang, W. Li, X. Chen, Nanostructured TiO2-Based Anode Materials for High-Performance Rechargeable Lithium-Ion Batteries, ChemNanoMat2 (2016) 764-775.

DOI: 10.1002/cnma.201600093

Google Scholar

[15] X. Peng, Z. Wang, P. Huang, X. Chen, X. Fu, W. Dai, Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature, Sensors 16 (2016) 1249.

DOI: 10.3390/s16081249

Google Scholar

[16] D.A.H. Hanaor, Ch.C. Sorrell, Review of the anatase to rutile phase transformation, J Mater Sci 46 (2011) 855–874.

DOI: 10.1007/s10853-010-5113-0

Google Scholar