[1]
G.- D. Zhan, J. D. Kuntz, J. Wan, A. K. Mukherjee, Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites, Nat. Mater. 2 (2003) 38-42.
DOI: 10.1038/nmat793
Google Scholar
[2]
H. Kim, A. A. Abdala, C. W. Macosko, Graphene/Polymer nanocomposites, Marcomolecules (2010) 6515-6530.
DOI: 10.1021/ma100572e
Google Scholar
[3]
B. Lee, D. Lee, J. H. Lee, H. J. Ryu, S. H. Hong, Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites, Sci. Rep. 6 (2016) 27609.
DOI: 10.1038/srep27609
Google Scholar
[4]
J. Eichler, C. Lesniak, Boron nitride (BN) and BN composite for high-temperature applications, J. Eur. Ceram. Soc. 28 (2008) 1105-1109.
DOI: 10.1016/j.jeurceramsoc.2007.09.005
Google Scholar
[5]
Y. L. Li, R. X. Li, J. X. Zhang, Enhanced mechanical properties of machinable Si3N4/BN composites by spark plasma sintering, Mater. Sci. Eng. A 483-484 (2008) 207-210.
DOI: 10.1016/j.msea.2006.09.158
Google Scholar
[6]
H. Y. Liu, S. M. Hsu, Fracture behavior of multilayer silicon nitride/boron nitride ceramics, J. Am. Ceram. Soc. 79 (1996) 2452-2457.
DOI: 10.1111/j.1151-2916.1996.tb08996.x
Google Scholar
[7]
Y.- K. Seo, Y.-W. Kim, K. J. Kim, W.- S. Seo, Electrically conductive SiC-BN composites, J. Eur. Ceram. Soc. 36 (2016) 3879-3887.
DOI: 10.1016/j.jeurceramsoc.2016.06.040
Google Scholar
[8]
C. Steinborn, M. Herrmann, U. Keitel, A. Schőnecker, J. Eichler, Correlations between microstructure and dieletric properties of hexagonal boron nitride, J. Eur. Ceram. Soc. 34 (2014) 1703-1713.
DOI: 10.1016/j.jeurceramsoc.2014.01.005
Google Scholar
[9]
X. Duan, Z. Yang, L. Chen, Z. Tian, D. Cai, Y. Wang, D. Jia, Y. Zhou, Review on the properties of hexagonal boron nitride matrix composite ceramics, J. Eur. Ceram. Soc. 36 (2016) 3725-3737.
DOI: 10.1016/j.jeurceramsoc.2016.05.007
Google Scholar
[10]
P. Pettersson, P. Johnsson, Z. Shen, Parameters for measuring the thermal shock of ceramic materials with an indentation-quench method, J. Eur. Ceram. Soc. 22 (2002) 1883-1889.
DOI: 10.1016/s0955-2219(01)00504-0
Google Scholar
[11]
T. Andersson, D. J. Rowcliffe, Indentation thermal shock test for ceramics, J. Am. Ceram. Soc. 79 (1996) 1509-1514.
DOI: 10.1111/j.1151-2916.1996.tb08758.x
Google Scholar
[12]
D. P. H. Hasselman, United theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J. Am. Ceram. Soc. 52 (1969) 600-604.
DOI: 10.1111/j.1151-2916.1969.tb15848.x
Google Scholar
[13]
M. Collin, D. Rowcliffe, Analysis and prediction of thermal shock in brittle materials, Acta Mater. 48 (2000) 1655-1665.
DOI: 10.1016/s1359-6454(00)00011-2
Google Scholar
[14]
A. Kovalčíková, J. Balko, Cs. Balázsi, P. Hvizdoš, J. Dusza, Influence of hBN content on mechanical and tribological properties of Si3N4/BN ceramic composites, J. Eur. Ceram. Soc. 34 (2014) 3319-3328.
DOI: 10.1016/j.jeurceramsoc.2014.02.021
Google Scholar
[15]
F. Zhai, S. Li, J. Sun, Z. Yi., Microstructure, mechanical properties and thermal shock behavior of h-BN-SiC composites prepared by spark plasma sintering, Ceram. Int. 43 (2017) 2413-2417.
DOI: 10.1016/j.ceramint.2016.11.030
Google Scholar
[16]
Z.- H. Yang, D.- Ch. Jia, Y. Zhou, Q.- Ch. Meng, P.- Y. Shi, Ch.- B. Song, Thermal shock resistance of in situ formed SiC-BN composites, Mater. Chem. Phys. 107 (2008) 476-479.
DOI: 10.1016/j.matchemphys.2007.08.013
Google Scholar