Numerical Stress Analysis of the Biaxial Tension-Compression Wedge-Splitting Test in Vicinity of the Crack Tip

Article Preview

Abstract:

Wedge-splitting test is widely used fracture mechanical test for its stability in measurement during the testing and many papers were published. However, the biaxial wedge-splitting test is relatively a new method and the numerical stress analysis of such test is necessary. Especially the investigation of the stress fields in the vicinity of the crack tip. In this contribution, influence of various biaxial stress level is discussed on values of first and second terms of William’s expansion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Bruhwiler, F.H. Wittmann, The wedge splitting test: a new method of performing fracture mechanics tests, Engineering Fracture Mechanics, 35, (1990), 117–125.

DOI: 10.1016/0013-7944(90)90189-n

Google Scholar

[2] I. Merta, E.K. Tschegg, fracture energy of natural fibre reinforced concrete, Construction and Building Materials, 40, (2013), 991–997.

DOI: 10.1016/j.conbuildmat.2012.11.060

Google Scholar

[3] R. Walter, L. Østergaard, J.F. Olesen, H. Stang, Wedge splitting test for a steel-concrete interface, Engineering Fracture Mechanics, 72, (2005), 2565–2583.

DOI: 10.1016/j.engfracmech.2005.06.001

Google Scholar

[4] S. Seitl, B. Nieto García, I. Merta, Wedge splitting test method: quantification of influence of glued marble plates by two-parameter fracture mechanics, Frattura ed Integtita Strutturale, 30, (2014), 174–181.

DOI: 10.3221/igf-esis.30.23

Google Scholar

[5] ASTM E 1221-96, Standard Method for Determining Plane-Strain Crack-Arrest Toughness, KIa, of Ferritic Steels, American Society for Testing and Materials, Philadelphia, PA, (2002).

DOI: 10.1520/e1221-12ar18

Google Scholar

[6] S. Seitl, P. Hutař, Z. Knésl, Sensitivity of fatigue crack growth data to specimen geometry, Key Engineering Materials, 385-387, (2008), 557–560.

DOI: 10.4028/www.scientific.net/kem.385-387.557

Google Scholar

[7] H.N. Linsbauer, E.K. Tschegg, Fracture energy determination of concrete with cube-shaped specimens, Zement und Beton, 31 (1986), 38–40.

Google Scholar

[8] E.K. Tschegg, Republic Österreich. Patent number 390328B, (1986).

Google Scholar

[9] G.V. Guinea, M. Elices, J. Planas, Stress intensity factors for wedge-splitting geometry, International Journal of Fracture, 81, (1996), 113–124.

DOI: 10.1007/bf00033177

Google Scholar

[10] S. Seitl, I. Merta, V. Veselý, Wedge splitting test of foam concrete specimens: Calibration curves, Key Engineering Materials, 627, (2015), 281–284.

DOI: 10.4028/www.scientific.net/kem.627.281

Google Scholar

[11] V. Veselý, L. Řoutil, S. Seitl, Wedge-splitting test - Determination of minimal starting notch length for various cement based composites part I: Cohesive crack modelling, Key Engineering Materials, 452–453, (2011), 77–80.

DOI: 10.4028/www.scientific.net/kem.452-453.77

Google Scholar

[12] V. Veselý, P. Frantík, J. Sobek, L. Malíková, S. Seitl, Multi-parameter crack tip stress description for evaluation of nonlinear zone width in silicate composite specimens in component splitting/bending test geometry, Fatigue and Fracture of Engineering Materials and Structures, 38(2), (2015).

DOI: 10.1111/ffe.12170

Google Scholar

[13] V. Veselý, J. Sobek, L. Šestáková, P. Frantík, S. Seitl, Multi-parameter crack tip stress state description for estimation of fracture process zone extent in silicate composite WST specimens, Frattura ed Integrita Strutturale, 7(25), (2013).

DOI: 10.3221/igf-esis.25.11

Google Scholar

[14] D. Li, L. N. Y., Wong, The Brazilian disc test for rock mechanics applications: review and new insights. Rock mechanics and rock engineering, 46 (2), (2013), 269–287.

DOI: 10.1007/s00603-012-0257-7

Google Scholar

[15] S. Seitl, P. Miarka, Evaluation of mixed mode I/II fracture toughness of C 50/60 from Brazilian disc test, Frattura ed Integrita Strutturale, 42, (2017), 119–127.

DOI: 10.3221/igf-esis.42.13

Google Scholar

[16] E.K. Tschegg, A. Schneemayer, I. Merta, K. Rieder, Energy dissipation capacity of fibre reinforce concrete under biaxial tension-compression load. Part I: Test equipment and work of fracture, Cement & Concrete Composite, 62, (2015), 195–203.

DOI: 10.1016/j.cemconcomp.2015.07.002

Google Scholar

[17] E.K. Tschegg, A. Schneemayer, I. Merta, K. Rieder, Energy dissipation capacity of fibre reinforced concrete under biaxial tension-compression load. Part II: Determination of the fracture process zone with the acoustic emission technique, Cement & Concrete Composite, 62, (2015).

DOI: 10.1016/j.cemconcomp.2015.07.003

Google Scholar

[18] M.L. Williams, On the stress distribution at the base of a stationary crack, Journal of Applied Mechanics, 24 (1975), 109–114.

Google Scholar

[19] S. Seitl, V. Veselý, L. Řoutil, Two-parameter fracture mechanical analysis of a near-crack-tip stress field in wedge splitting test specimens, Computers and Structures, 89, (2011), 1852–1858.

DOI: 10.1016/j.compstruc.2011.05.020

Google Scholar

[20] A. Schneemayer, Uniaxiales und biaxiales Bruchverhalten von Faserbeton, Diplomarbeit, TUW (2010).

Google Scholar