[1]
M. . Haque and M. . Maleque, Effect of process variables on structure and properties of aluminium–silicon piston alloy,, J. Mater. Process. Technol., vol. 77, no. 1–3, p.122–128, (1998).
DOI: 10.1016/s0924-0136(97)00409-3
Google Scholar
[2]
F. Engineering, Improvement of mechanical properties of AlSi7Mg alloy with fast cooling homogenous modifier,, Arch. Foundry Eng., vol. 8, no. 1, p.85–88, (2008).
Google Scholar
[3]
T. Gao, Y. Wu, C. Li, and X. Liu, Morphologies and growth mechanisms of α-Al(FeMn)Si in Al-Si-Fe-Mn alloy,, Mater. Lett., vol. 110, p.191–194, (2013).
DOI: 10.1016/j.matlet.2013.08.039
Google Scholar
[4]
C. Puncreobutr, P. D. Lee, K. M. Kareh, T. Connolley, J. L. Fife, and A. B. Phillion, Influence of Fe-rich intermetallics on solidification defects in Al-Si-Cu alloys,, Acta Mater., vol. 68, p.42–51, (2014).
DOI: 10.1016/j.actamat.2014.01.007
Google Scholar
[5]
L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, and I. L. Svensson, Microstructure, tensile and fatigue properties of the Al-10%Si-2%Cu alloy with different Fe and Mn content cast under controlled conditions,, J. Mater. Process. Technol., vol. 209, no. 15–16, p.5669–5679, (2009).
DOI: 10.1016/j.jmatprotec.2009.05.030
Google Scholar
[6]
S. Gencalp Irizalp and N. Saklakoglu, Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy,, Eng. Sci. Technol. an Int. J., vol. 17, no. 2, p.58–62, (2014).
DOI: 10.1016/j.jestch.2014.03.006
Google Scholar
[7]
T. S. Mahmoud, Surface modification of A390 hypereutectic Al-Si cast alloys using friction stir processing,, Surf. Coatings Technol., vol. 228, p.209–220, (2013).
DOI: 10.1016/j.surfcoat.2013.04.031
Google Scholar
[8]
S. Pasebani, I. Charit, and R. S. Mishra, Effect of tool rotation rate on constituent particles in a friction stir processed 2024Al alloy,, Mater. Lett., vol. 160, p.64–67, (2015).
DOI: 10.1016/j.matlet.2015.07.074
Google Scholar
[9]
T. R. McNelley, S. Swaminathan, and J. Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys,, Scr. Mater., vol. 58, no. 5, p.349–354, (2008).
DOI: 10.1016/j.scriptamat.2007.09.064
Google Scholar
[10]
A. N. Albakri, S. Z. Aljoaba, and M. K. Khraisheh, Modelling of Friction Stir Processing with in Process Cooling Using Computational Fluid Dynamics Analysis,, Adv. Sustain. Manuf. Proc. 8th Glob. Conf., p.99–105, (2011).
DOI: 10.1007/978-3-642-20183-7_15
Google Scholar
[11]
M. M. El-Rayes and E. A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082,, J. Mater. Process. Technol., vol. 212, no. 5, p.1157–1168, (2012).
DOI: 10.1016/j.jmatprotec.2011.12.017
Google Scholar
[12]
K. Nakata, Y. G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing,, Mater. Sci. Eng. A, vol. 437, no. 2, p.274–280, (2006).
DOI: 10.1016/j.msea.2006.07.150
Google Scholar
[13]
M. A. Mofid, A. Abdollah-zadeh, and F. Malek Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy,, Mater. Des., vol. 36, p.161–167, (2012).
DOI: 10.1016/j.matdes.2011.11.004
Google Scholar
[14]
C. M. Dinnis, J. A. Taylor, and A. K. Dahle, As-cast morphology of iron-intermetallics in Al-Si foundry alloys,, Scr. Mater., vol. 53, no. 8, p.955–958, (2005).
DOI: 10.1016/j.scriptamat.2005.06.028
Google Scholar
[15]
J. A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys,, Procedia Mater. Sci., vol. 1, p.19–33, (2012).
DOI: 10.1016/j.mspro.2012.06.004
Google Scholar
[16]
H. Singh, P. Kumar, and B. Singh, Effect of Under Surface Cooling on Tensile Strength of Friction Stir Processed Aluminium Alloy 6082,, vol. 5, no. 1, p.40–44, (2016).
Google Scholar
[17]
A. G. Rao, V. A. Katkar, G. Gunasekaran, V. P. Deshmukh, N. Prabhu, and B. P. Kashyap, Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al-30Si alloy,, Corros. Sci., vol. 83, p.198–208, (2014).
DOI: 10.1016/j.corsci.2014.02.013
Google Scholar
[18]
S. M. Aktarer, D. M. Sekban, O. Saray, T. Kucukomeroglu, Z. Y. Ma, and G. Purcek, Effect of two-pass friction stir processing on the microstructure and mechanical properties of as-cast binary Al-12Si alloy,, Mater. Sci. Eng. A, vol. 636, p.311–319, (2015).
DOI: 10.1016/j.msea.2015.03.111
Google Scholar
[19]
R. Miranda, J. Gandra, and P. Vilaça, Surface Modification by Friction Based Processes,, Mod. Surf. Eng. Treat., p.1–20, (2013).
Google Scholar
[20]
Z. Y. Ma, Friction Stir Processing Technology: A Review,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 39, no. 3, p.642–658, (2008).
DOI: 10.1007/s11661-007-9459-0
Google Scholar
[21]
R. S. Mishra, P. S. De, and N. Kumar, Friction Stir Welding and Processing, no. 2007. (2014).
Google Scholar
[22]
S. Ji, W. Yang, F. Gao, D. Watson, and Z. Fan, Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys,, Mater. Sci. Eng. A, vol. 564, p.130–139, (2013).
DOI: 10.1016/j.msea.2012.11.095
Google Scholar
[23]
Z. Y. Ma, S. R. Sharma, and R. S. Mishra, Microstructural modification of As-cast Al-Si-Mg alloy by friction stir processing,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 37, no. 11, p.3323–3336, (2006).
DOI: 10.1007/bf02586167
Google Scholar
[24]
M. Tupaj, A. W. Orłowicz, M. Mróz, and A. Trytek, Materials Properties of Iron-rich Intermetallic Phase in a Multicomponent Aluminium-Silicon Alloy,, Arch. Foundry Eng., vol. 15, no. 1, p.111–114, (2015).
DOI: 10.1515/afe-2016-0063
Google Scholar
[25]
W. C. Yang, F. Gao, and S. X. Ji, Formation and sedimentation of Fe-rich intermetallics in Al-Si-Cu-Fe alloy,, Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 5, p.1704–1714, (2015).
DOI: 10.1016/s1003-6326(15)63776-1
Google Scholar
[26]
A. G. Rao, V. P. Deshmukh, N. Prabhu, and B. P. Kashyap, Ductilizing of a brittle as-cast hypereutectic Al-Si alloy by friction stir processing,, Mater. Lett., vol. 159, p.417–419, (2015).
DOI: 10.1016/j.matlet.2015.07.006
Google Scholar
[27]
Y.-J. Kwon, I. Shigematsu, and N. Saito, Mechanical Property Improvements in Aluminum Alloy through Grain Refinement using Friction Stir Process,, Mater. Trans., vol. 45, no. 7, p.2304–2311, (2004).
DOI: 10.2320/matertrans.45.2304
Google Scholar
[28]
T. S. Mahmoud and S. S. Mohamed, Improvement of microstructural, mechanical and tribological characteristics of A413 cast Al alloys using friction stir processing,, Mater. Sci. Eng. A, vol. 558, p.502–509, (2012).
DOI: 10.1016/j.msea.2012.08.036
Google Scholar