Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of A384 Aluminum Alloy

Article Preview

Abstract:

Friction stir processing (FSP) is a solid-state technique for microstructural modification. The aim of this work is to evaluate the effect of input process parameters of friction stir processing (tool rotational speed rpm, travel speed mm/min) on microstructure and mechanical properties of A384 aluminum alloy. A384 aluminum alloy was cast using conventional stir casting process. The obtained alloy was subjected to friction stir process using different input parameters (rpm, mm/min) with double pass. Water was used as cooling medium during process. The microstructures of investigated alloys were characterized by optical, SEM microscopes, EDS and Map analyzer, while mechanical properties were evaluated by using tensile test. The results indicate that; after friction stir processing, the microstructure of as-cast alloy was greatly improved. Needle-like eutectic Si and Chinese Script a-Fe were modified to fine precipitates. Meanwhile, coarse primary Si and large plate b-Fe phase were dissolved. On the other hand, mapping analysis shows homogenous distribution of different alloying elements through the matrix. The higher values of tensile properties were obtained at 1200 rpm and 80 mm/min. UTS and YS were increased by 98% and50%, respectively. Meanwhile, ductility was approximately three times higher than that of cast alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-36

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. . Haque and M. . Maleque, Effect of process variables on structure and properties of aluminium–silicon piston alloy,, J. Mater. Process. Technol., vol. 77, no. 1–3, p.122–128, (1998).

DOI: 10.1016/s0924-0136(97)00409-3

Google Scholar

[2] F. Engineering, Improvement of mechanical properties of AlSi7Mg alloy with fast cooling homogenous modifier,, Arch. Foundry Eng., vol. 8, no. 1, p.85–88, (2008).

Google Scholar

[3] T. Gao, Y. Wu, C. Li, and X. Liu, Morphologies and growth mechanisms of α-Al(FeMn)Si in Al-Si-Fe-Mn alloy,, Mater. Lett., vol. 110, p.191–194, (2013).

DOI: 10.1016/j.matlet.2013.08.039

Google Scholar

[4] C. Puncreobutr, P. D. Lee, K. M. Kareh, T. Connolley, J. L. Fife, and A. B. Phillion, Influence of Fe-rich intermetallics on solidification defects in Al-Si-Cu alloys,, Acta Mater., vol. 68, p.42–51, (2014).

DOI: 10.1016/j.actamat.2014.01.007

Google Scholar

[5] L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, and I. L. Svensson, Microstructure, tensile and fatigue properties of the Al-10%Si-2%Cu alloy with different Fe and Mn content cast under controlled conditions,, J. Mater. Process. Technol., vol. 209, no. 15–16, p.5669–5679, (2009).

DOI: 10.1016/j.jmatprotec.2009.05.030

Google Scholar

[6] S. Gencalp Irizalp and N. Saklakoglu, Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy,, Eng. Sci. Technol. an Int. J., vol. 17, no. 2, p.58–62, (2014).

DOI: 10.1016/j.jestch.2014.03.006

Google Scholar

[7] T. S. Mahmoud, Surface modification of A390 hypereutectic Al-Si cast alloys using friction stir processing,, Surf. Coatings Technol., vol. 228, p.209–220, (2013).

DOI: 10.1016/j.surfcoat.2013.04.031

Google Scholar

[8] S. Pasebani, I. Charit, and R. S. Mishra, Effect of tool rotation rate on constituent particles in a friction stir processed 2024Al alloy,, Mater. Lett., vol. 160, p.64–67, (2015).

DOI: 10.1016/j.matlet.2015.07.074

Google Scholar

[9] T. R. McNelley, S. Swaminathan, and J. Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys,, Scr. Mater., vol. 58, no. 5, p.349–354, (2008).

DOI: 10.1016/j.scriptamat.2007.09.064

Google Scholar

[10] A. N. Albakri, S. Z. Aljoaba, and M. K. Khraisheh, Modelling of Friction Stir Processing with in Process Cooling Using Computational Fluid Dynamics Analysis,, Adv. Sustain. Manuf. Proc. 8th Glob. Conf., p.99–105, (2011).

DOI: 10.1007/978-3-642-20183-7_15

Google Scholar

[11] M. M. El-Rayes and E. A. El-Danaf, The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082,, J. Mater. Process. Technol., vol. 212, no. 5, p.1157–1168, (2012).

DOI: 10.1016/j.jmatprotec.2011.12.017

Google Scholar

[12] K. Nakata, Y. G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing,, Mater. Sci. Eng. A, vol. 437, no. 2, p.274–280, (2006).

DOI: 10.1016/j.msea.2006.07.150

Google Scholar

[13] M. A. Mofid, A. Abdollah-zadeh, and F. Malek Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy,, Mater. Des., vol. 36, p.161–167, (2012).

DOI: 10.1016/j.matdes.2011.11.004

Google Scholar

[14] C. M. Dinnis, J. A. Taylor, and A. K. Dahle, As-cast morphology of iron-intermetallics in Al-Si foundry alloys,, Scr. Mater., vol. 53, no. 8, p.955–958, (2005).

DOI: 10.1016/j.scriptamat.2005.06.028

Google Scholar

[15] J. A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys,, Procedia Mater. Sci., vol. 1, p.19–33, (2012).

DOI: 10.1016/j.mspro.2012.06.004

Google Scholar

[16] H. Singh, P. Kumar, and B. Singh, Effect of Under Surface Cooling on Tensile Strength of Friction Stir Processed Aluminium Alloy 6082,, vol. 5, no. 1, p.40–44, (2016).

Google Scholar

[17] A. G. Rao, V. A. Katkar, G. Gunasekaran, V. P. Deshmukh, N. Prabhu, and B. P. Kashyap, Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al-30Si alloy,, Corros. Sci., vol. 83, p.198–208, (2014).

DOI: 10.1016/j.corsci.2014.02.013

Google Scholar

[18] S. M. Aktarer, D. M. Sekban, O. Saray, T. Kucukomeroglu, Z. Y. Ma, and G. Purcek, Effect of two-pass friction stir processing on the microstructure and mechanical properties of as-cast binary Al-12Si alloy,, Mater. Sci. Eng. A, vol. 636, p.311–319, (2015).

DOI: 10.1016/j.msea.2015.03.111

Google Scholar

[19] R. Miranda, J. Gandra, and P. Vilaça, Surface Modification by Friction Based Processes,, Mod. Surf. Eng. Treat., p.1–20, (2013).

Google Scholar

[20] Z. Y. Ma, Friction Stir Processing Technology: A Review,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 39, no. 3, p.642–658, (2008).

DOI: 10.1007/s11661-007-9459-0

Google Scholar

[21] R. S. Mishra, P. S. De, and N. Kumar, Friction Stir Welding and Processing, no. 2007. (2014).

Google Scholar

[22] S. Ji, W. Yang, F. Gao, D. Watson, and Z. Fan, Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys,, Mater. Sci. Eng. A, vol. 564, p.130–139, (2013).

DOI: 10.1016/j.msea.2012.11.095

Google Scholar

[23] Z. Y. Ma, S. R. Sharma, and R. S. Mishra, Microstructural modification of As-cast Al-Si-Mg alloy by friction stir processing,, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 37, no. 11, p.3323–3336, (2006).

DOI: 10.1007/bf02586167

Google Scholar

[24] M. Tupaj, A. W. Orłowicz, M. Mróz, and A. Trytek, Materials Properties of Iron-rich Intermetallic Phase in a Multicomponent Aluminium-Silicon Alloy,, Arch. Foundry Eng., vol. 15, no. 1, p.111–114, (2015).

DOI: 10.1515/afe-2016-0063

Google Scholar

[25] W. C. Yang, F. Gao, and S. X. Ji, Formation and sedimentation of Fe-rich intermetallics in Al-Si-Cu-Fe alloy,, Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 5, p.1704–1714, (2015).

DOI: 10.1016/s1003-6326(15)63776-1

Google Scholar

[26] A. G. Rao, V. P. Deshmukh, N. Prabhu, and B. P. Kashyap, Ductilizing of a brittle as-cast hypereutectic Al-Si alloy by friction stir processing,, Mater. Lett., vol. 159, p.417–419, (2015).

DOI: 10.1016/j.matlet.2015.07.006

Google Scholar

[27] Y.-J. Kwon, I. Shigematsu, and N. Saito, Mechanical Property Improvements in Aluminum Alloy through Grain Refinement using Friction Stir Process,, Mater. Trans., vol. 45, no. 7, p.2304–2311, (2004).

DOI: 10.2320/matertrans.45.2304

Google Scholar

[28] T. S. Mahmoud and S. S. Mohamed, Improvement of microstructural, mechanical and tribological characteristics of A413 cast Al alloys using friction stir processing,, Mater. Sci. Eng. A, vol. 558, p.502–509, (2012).

DOI: 10.1016/j.msea.2012.08.036

Google Scholar