[1]
Thomas, W.M., E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, G.B. Patent Application No.9125978.8, December (1991).
Google Scholar
[2]
Schmidt, H.N.B., T.L. Dickerson, and J.H. Hattel, Material flow in butt friction stir welds in AA2024-T3. Acta Materialia, 2006. 54(4): pp.1199-1209.
DOI: 10.1016/j.actamat.2005.10.052
Google Scholar
[3]
Rhodes, C.G., M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Materialia, 1997. 36(1): pp.69-75.
DOI: 10.1016/s1359-6462(96)00344-2
Google Scholar
[4]
Mishra, R.S. and Z.Y. Ma, Friction stir welding and processing. Materials Science and Engineering: R: Reports, 2005. 50(1-2): pp.1-78.
Google Scholar
[5]
John, R., K.V. Jata, and K. Sadananda, Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys. International Journal of Fatigue, 2003. 25(9-11): pp.939-948.
DOI: 10.1016/j.ijfatigue.2003.08.002
Google Scholar
[6]
Boehm, L., New engineering processes in aircraft construction: Application of laser-beam and friction stir welding. Glass Physics and Chemistry, 2005. 31(1): pp.27-29.
DOI: 10.1007/s10720-005-0021-0
Google Scholar
[7]
Enomoto, M., Friction stir welding: research and industrial applications,. Welding International, 2003. 17(5): pp.341-345.
DOI: 10.1533/wint.2003.3114
Google Scholar
[8]
Dattoma, V., M. Giorgi, and R. Nobile, On the Residual Stress Field in the Aluminum Alloy Fsw Joints, in Experimental Analysis of Nano and Engineering Materials and Structures. 2007. pp.943-944.
DOI: 10.1007/978-1-4020-6239-1_469
Google Scholar
[9]
Hamada, A.S., A. Järvenpää, M.M.Z. Ahmed, M. Jaskari, B.P. Wynne, D.A. Porter, and L.P. Karjalainen, The microstructural evolution of friction stir welded AA6082-T6 aluminum alloy during cyclic deformation. MaterialsScience&EngineeringA 2015. 642: p.366.
DOI: 10.1016/j.msea.2015.06.100
Google Scholar
[10]
Ahmed, M.M.Z., E. Ahmed, A.S. Hamada, S.A. Khodir, M.M. El-Sayed Seleman, and B.P. Wynne, Microstructure and mechanical properties evolution of friction stir spot welded high-Mn twinning-induced plasticity steel. Materials and Design 2016. 91: pp.378-387.
DOI: 10.1016/j.matdes.2015.12.001
Google Scholar
[11]
Su, J.Q., T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Materialia, 2003. 51(3): pp.713-729.
DOI: 10.1016/s1359-6454(02)00449-4
Google Scholar
[12]
Ahmed, M.M.Z., B.P. Wynne, W.M. Rainforth, and P.L. Threadgill, An Investigation of Hardness, Microstructure and Crystallographic Texture in Thick Sectioned Friction Stir Welded AA6082. 7Th International Friction Stir Welding Symposium, Awaji Island, Japan, 20-22 May, (2008).
DOI: 10.1016/j.matchar.2011.12.005
Google Scholar
[13]
Ahmed, M.M.Z., B.P. Wynne, and J.P. Martin, Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718. Science and Technology of Welding and Joining, 2013. 18 (8): p.680.
DOI: 10.1179/1362171813y.0000000156
Google Scholar
[14]
Ahmed, M.M.Z., S. Ataya, M.M. El-Sayed Seleman, H.R. Ammar, and E. Ahmed, Friction stir welding of similar and dissimilar AA7075 and AA5083. Journal of Materials Processing Technology, 2017. 242: pp.77-91.
DOI: 10.1016/j.jmatprotec.2016.11.024
Google Scholar
[15]
Ahmed, M.M.Z., B.P. Wynne, W.M. Rainforth, and P.L. Threadgill, Quantifying crystallographic texture in the probe-dominated region of thick-section friction-stir-welded aluminium. Scripta Materialia, 2008. 59(5): pp.507-510.
DOI: 10.1016/j.scriptamat.2008.04.047
Google Scholar
[16]
Fonda, R.W. and J.F. Bingert, Texture variations in an aluminum friction stir weld. Scripta Materialia, 2007. 57(11): pp.1052-1055.
DOI: 10.1016/j.scriptamat.2007.06.068
Google Scholar
[17]
Field, D., T. Nelson, Y. Hovanski, and K. Jata, Heterogeneity of crystallographic texture in friction stir welds of aluminum. Metallurgical and Materials Transactions A, 2001. 32(11): pp.2869-2877.
DOI: 10.1007/s11661-001-1037-2
Google Scholar
[18]
Knipling, K.E. and R.W. Fonda, Texture development in the stir zone of near-[alpha] titanium friction stir welds. Scripta Materialia, 2009. 60(12): pp.1097-1100.
DOI: 10.1016/j.scriptamat.2009.02.050
Google Scholar
[19]
Ahmed, M.M.Z., B.P. Wynne, W.M. Rainforth, and P.L. Threadgill, Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminium. Scripta Materialia, 2011. 64: pp.45-48.
DOI: 10.1016/j.scriptamat.2010.08.060
Google Scholar
[20]
Ahmed, M.M.Z., B.P. Wynne, W.M. Rainforth, and P.L. Threadgill, Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A. Materials Characterization, 201264: pp.107-117.
DOI: 10.1016/j.matchar.2011.12.005
Google Scholar
[21]
Sato, Y. and H. Kokawa, Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum. Metallurgical and Materials Transactions A, 2001. 32(12): pp.3023-3031.
DOI: 10.1007/s11661-001-0177-8
Google Scholar