Study on FSW Butt Joint Properties of Dissimilar Wrought AA6063-T1 Aluminum Alloy and Cast Al-Mg Aluminum Alloy

Article Preview

Abstract:

This paper focused on applying friction stir weld method on welding a butt joint of wrought6063-T1 aluminum alloy and cast Mg-Si aluminum alloy and studied on effect of various parameterssuch as rotating speeds and travelling speeds. The experiment revealed that a variation of the rotatingand travelling speeds affected to vary the weld quality. Higher rotating speed and higher travellingspeed produced the defects such as voids that directly decreased tensile strength of the joint. Whenthe sound weld metal with the high tensile strength was produced, the failure of the tensile testspecimen was located at the cast aluminum alloy. The average tensile strength of the sound joints was10-15% higher than that of the cast aluminum alloy. Microstructure investigation of the specimenwith the optimum welding parameter revealed that the combination of the aluminum alloys wascompleted without any defect in the weld metal. Compressed force by the welding tool produced thesmall compacted grain in the weld metal and small combined banding area at the interface of boththe cast aluminum alloy and the weld metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. R. Askeland, P. Phule, The Science and Engineering of Materials, Cengage Learning, Singapore, (2006).

Google Scholar

[2] S. J. Doshi, A. V Gohil, N. D. Mehta, S. R. Vaghasiya, Challenges in Fusion Welding of Al alloy for Body in White, Mater. Today: Proc. 5 (2018) 6370-6375.

DOI: 10.1016/j.matpr.2017.12.247

Google Scholar

[3] R. Nandan, T. DebRoy, H. K. D. H. Bhadeshia, Recent advances in friction-stir welding – Process, weldment structure and properties, Prog. Mater. Sci. 53 (2008) 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[4] V. Infante, D. F. O. Braga, F. Duarte, P. M. G. Moreira, M. de Freitas, P. M. S. T. de Castro, Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding, Int. J. Fatigue, 82 (2016) 310-316.

DOI: 10.1016/j.ijfatigue.2015.06.020

Google Scholar

[5] U. Das, V. Toppo, Effect of Tool Rotational Speed on Temperature and Impact Strength of Friction Stir Welded Joint of Two Dissimilar Aluminum Alloys, Mater. Today: Proc. 5 (2018) 6170-6175.

DOI: 10.1016/j.matpr.2017.12.223

Google Scholar

[6] N. Z. Khan, A. N. Siddiquee, Z. A. Khan, S. K. Shihab, Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys, J. Alloys. Compd. 648 (2015) 360-367.

DOI: 10.1016/j.jallcom.2015.06.246

Google Scholar

[7] M. Ilangovan, S. R. Boopathy, V. Balasubramanian, Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints, Trans. Nonferr. Metal. Soc. China, 25 (2015) 1080-1090.

DOI: 10.1016/s1003-6326(15)63701-3

Google Scholar

[8] D. Devaiah, K. Kishore, P. Laxminarayana, Optimal FSW process parameters for dissimilar aluminium alloys (AA5083 and AA6061) Using Taguchi Technique, Mater. Today: Proc. 5 (2018) 4607-4614.

DOI: 10.1016/j.matpr.2017.12.031

Google Scholar

[9] R. Srinivasan, A. Ramesh, A. Athithanambi, Effect of Axial Force on Microstructure and Mechanical Properties Of Friction Stir Welded Squeeze Cast A413 Aluminium Alloy, Mater. Today: Proc. 5 (2018) 13486-13494.

DOI: 10.1016/j.matpr.2018.02.344

Google Scholar

[10] M. S. Rizi, A. H. Kokabi, Microstructure evolution and microhardness of friction stir welded cast aluminum bronze, J. Mater. Proc. Technol. 214 (2014) 1524-1529.

DOI: 10.1016/j.jmatprotec.2014.02.017

Google Scholar

[11] A. M. Dubey, A. Kumar, A. K. Yadav, Wear behaviour of friction stir weld joint of cast Al (4–10%) Cu alloy welded at different operating parameters, J. Mater. Proc. Technol. 240 (2017) 87-97.

DOI: 10.1016/j.jmatprotec.2016.09.003

Google Scholar

[12] K. Sadmai, J. Kaewwichit, W. Roybang, N. Keawsakul, K. Kimapong, Microstructure and Tensile Strength of Butt Joint between AA6063 Aluminum Alloy and AISI304 Stainless Steel by Friction Stir Welding, Int. J. Adv. Cult. Technol. 3 (2015) 179-187.

DOI: 10.17703/ijact.2015.3.1.179

Google Scholar

[13] S. Zhang, Q. Shi, Q. Liu, R. Xie, G. Zhang, and G. Chen, Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding, Int. J. Heat. Mass Transf. 125 (2018) 32-42.

DOI: 10.1016/j.ijheatmasstransfer.2018.04.067

Google Scholar

[14] G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, (1988).

Google Scholar

[15] S. Zhang, G. Chen, Q. Liu, H. Li, G. Zhang, G. Wang et al., Numerical analysis and analytical modeling of the spatial distribution of heat flux during friction stir welding, J. Manuf. Process. 33 (2018) 245-255.

DOI: 10.1016/j.jmapro.2018.05.021

Google Scholar

[16] E. Sharghi, A. Farzadi, Simulation of strain rate, material flow, and nugget shape during dissimilar friction stir welding of AA6061 aluminum alloy and Al-Mg2Si composite, J. Alloys. Compd. 748 (2018) 953-960.

DOI: 10.1016/j.jallcom.2018.03.145

Google Scholar