An Efficient Method for Decoloration of Inulin from Jerusalem Artichoke by Macroporous Resin

Article Preview

Abstract:

The decoloration method for Inulin from Jerusalem artichoke with activated carbon andmacroporous resin was investigated in this manuscript. Six resins (D113, D301, 001×7, 201×7,DA201-C and activated carbon) with same diameter were studied through static experiments.Meanwhile, the decoloration duration and resin dosage were also determined. Macroporous resinadsorption method was better than the traditional activated carbon adsorption method. The resultsalso suggested that the polar and ionogenic properties significantly affected the decoloration rate. The001×7-201×7 type resin which are strongly polar resin offered the better decolorizing effect. Most ofpigment impurities were successfully removed from inulin solutions with 1:10 resin dosage and 40min decoloration process. Moreover, the decoloration rate and inulin loss rate were 82.29% and 12.67%respectively. This study would provide a potential approach for large-scale production of inulin forits wide applications in dietary supplements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-97

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Micka, A. Siepelmeyer, A. Holz, et al, Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial, Int. J. Food Sci. & Nutr. 68 (2016) 82-89.

DOI: 10.1080/09637486.2016.1212819

Google Scholar

[2] E. J. Vandamme, D. G. Derycke, Microbial inulinases: fermentation process, properties, and applications, Adv. Appl. Microbiol. 29 (1983) 139-176.

DOI: 10.1016/s0065-2164(08)70356-3

Google Scholar

[3] H. Alexiou, A. Franck, Prebiotic inulin-type fructans: nutritional benefits beyond dietary fibre source, Nutr. Bull. 33 (2008) 227-233.

DOI: 10.1111/j.1467-3010.2008.00710.x

Google Scholar

[4] G. Schaafsma, J. L. Slavin, Significance of Inulin Fructans in the Human Diet, Compr. Rev. Food Sci. Food Saf. 14 (2015) 37-47.

DOI: 10.1111/1541-4337.12119

Google Scholar

[5] A. H. Konsowa, M. E. Ossman, Y. S. Chen et al., Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon, J. Hazard. Mater. 176 (2010) 181-185.

DOI: 10.1016/j.jhazmat.2009.11.010

Google Scholar

[6] P. Baldrian, V Merhautová, J Gabriel et al., Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides, Appl. Catal. B. Environ. 66 (2006) 258-264.

DOI: 10.1016/j.apcatb.2006.04.001

Google Scholar

[7] F. J. Cervantes, A. Garcia-Espinosa, M. A. Moreno-Reynosa et al., Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes, Environ. Sci. Technol. 44 (2010) 1747.

DOI: 10.1021/es9027919

Google Scholar

[8] J. Liu, J. Luo, Y. Sun et al., A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin, Bioresour. Technol. 101 (2010) 6077.

DOI: 10.1016/j.biortech.2010.03.019

Google Scholar

[9] R. Yang, D. Meng, Y. Song et al, Simultaneous decoloration and deproteinization of crude polysaccharide from pumpkin residues by cross-linked polystyrene macroporous resin, J. Agric. Food Chem. 60 (2012) 8450-8456.

DOI: 10.1021/jf3031315

Google Scholar

[10] A. Zwir-Ferenc, M. Biziuk, Solid phase extraction technique - Trends, opportunities and applications, Pol. J. Environ. Stud. 15 (2006) 677-690.

Google Scholar

[11] C. W. Huck, G. K. Bonn. Recent developments in polymer-based sorbents for solid-phase extraction, J. Chromatogr. A. 885 (2000) 51-72.

DOI: 10.1016/s0021-9673(00)00333-2

Google Scholar

[12] Y. Shi, T. Liu, Y. Han et al., An efficient method for decoloration of polysaccharides from the sprouts of Toona sinensis (A. Juss.) Roem by anion exchange macroporous resins, Food Chem. 217 (2017) 461-468.

DOI: 10.1016/j.foodchem.2016.08.079

Google Scholar

[13] J. Liu, J. Luo, Y. Sun et al., A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin, Bioresour. Technol. 101 (2010) 60-77.

DOI: 10.1016/j.biortech.2010.03.019

Google Scholar

[14] R. Yang, D. Meng, Y. Song et al., Simultaneous decoloration and deproteinization of crude polysaccharide from pumpkin residues by cross-linked polystyrene macroporous resin, J. Agric. Food Chem. 60 (2012) 8450-8456.

DOI: 10.1021/jf3031315

Google Scholar

[15] Z. Zhao, L. Dong, Y. Wu et al., Preliminary separation and purification of rutin and quercetin from Euonymus alatus (Thunb.) Siebold extracts by macroporous resins, Food & Bioprod. Process. 89 (2011) 266-272.

DOI: 10.1016/j.fbp.2010.11.001

Google Scholar

[16] Y. Liu, D. Di, Q. Bai et al., Preparative separation and purification of rebaudioside a from steviol glycosides using mixed-mode macroporous adsorption resins, J. Agric. Food Chem. 59 (2011) 9629-9636.

DOI: 10.1021/jf2020232

Google Scholar

[17] Y. Fu, Y. Zu, W. Liu et al., Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins, J. Chromatogr. A. 1139 (2007) 206-213.

DOI: 10.1016/j.chroma.2006.11.015

Google Scholar

[18] C. W. Huck, Recent developments in polymer-based sorbents for solid-phase extraction, J. Chromatogr. A. 885 (2000) 51-72.

DOI: 10.1016/s0021-9673(00)00333-2

Google Scholar

[19] Y. F. Jiao, J. Su, Z. J. Wang et al., Adsorbed Performance of Oxalic Acid with 201×7 Strong-Alkaline Anion Resin, J. Chinese Soc. Rare Earths. 33 (2015) 581-587.

Google Scholar

[20] M. Dubois, K. A. Gilles, J. K. Hamilton et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356.

DOI: 10.1021/ac60111a017

Google Scholar