[1]
R. N. Swamy, H. Stavrides, Influence of the method of fabrication on strength properties of steel fiber concrete, Mater. Struct. 9(52) (1976) 243–253.
DOI: 10.1007/bf02478644
Google Scholar
[2]
R. F. Zollo, Fiber-reinforced concrete: an overview after 30 years of development, Cem. Concr. Comps. 19 (1997) 107-122.
DOI: 10.1016/s0958-9465(96)00046-7
Google Scholar
[3]
M. L. Zhao, J. Li, D. Law, Study of steel fiber distribution patterns in steel fiber reinforced concrete: An overview, in: X.Q Zhang, S.B. Zhao, Y.M. Xie (Eds.), 3rd International Conference on Civil Engineering, Architecture and Sustainable Infrastructure, DEStech Publications, Inc. 2015, pp.95-102.
Google Scholar
[4]
M. L. Zhao, J. Li, D. Law, Effects of flowability on SFRC fibre distribution and properties, Mag. Concr. Res. 69(20) (2017) 1043-1054.
DOI: 10.1680/jmacr.16.00080
Google Scholar
[5]
A. A. Shah, Y. Ribakov, Recent trends in steel fibered high-strength concrete, Mater. Design 32 (2011) 4122-4151.
DOI: 10.1016/j.matdes.2011.03.030
Google Scholar
[6]
P. S. Song, S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete, Constr. Build. Mater. 18 (2004) 669-673.
DOI: 10.1016/j.conbuildmat.2004.04.027
Google Scholar
[7]
W. Abbass, M. I. Khan, S. Mourad, Evaluation of mechanical properties of steel fiber reinforced concrete with different strength of concrete, Constr. Build. Mater. 168 (2018) 556-569.
DOI: 10.1016/j.conbuildmat.2018.02.164
Google Scholar
[8]
X. X. Ding, C. Y. Li, B. Han, Y. Z. Lu, S. B. Zhao, Effects of different deformed steel-fibers on preparation and properties of self-compacting SFRC, Constr. Build. Mater. 168 (2018) 471-481.
DOI: 10.1016/j.conbuildmat.2018.02.162
Google Scholar
[9]
İ. Şanal, N. Ö. Zihnioğlu, To what extent does the fiber orientation affect mechanical performance? Constr. Build. Mater. 44 (2013) 671-681.
DOI: 10.1016/j.conbuildmat.2013.03.079
Google Scholar
[10]
O. Karahan, E. Ozbay, C. D. Atis, M. Lachemi. K. M. A. Hossain, Effects of milled cut steel fibers on the properties of concrete, KSCE J. Civil Eng. 20(7) (2016) 2783-2789.
DOI: 10.1007/s12205-016-0577-3
Google Scholar
[11]
JG/T 3064-1999, Steel Fiber Reinforced Concrete, China Standard Press, Beijing, (1999).
Google Scholar
[12]
JGJ 55-2011, Specification for Mix Proportion Design of Ordinary Concrete, China Building Industry Press, Beijing, (2011).
Google Scholar
[13]
C. Y. Li, S. B. Zhao, X. J. Qian, Effect of sand ratio on thin-plate shearing steel fiber reinforced concrete, J. Build. Mater. 10(2) (2007) 247-252.
Google Scholar
[14]
S. B. Zhao, H. Du, X. J. Qian, C. Y. Li, Research on direct mix design method of steel fiber reinforced high-strength concrete, China Civil Eng. J. 41(7) (2008) 1-6.
Google Scholar
[15]
S. B. Zhao, C. Y. Li, H. Du, X. J. Qian, Study of steel-fiber reinforced high-strength concrete containing large coarse aggregate, J. Build. Mater. 13(2) (2010) 155-160.
Google Scholar
[16]
S. B. Zhao, H. Y. Huo, C. X. Song, L. S. Song, Binary superposition mix design method for SFRC Part I: principle and evaluation, Advanced Mater. Res. 168-170 (2011) 2186-2190.
DOI: 10.4028/www.scientific.net/amr.168-170.2186
Google Scholar
[17]
H. Y. Huo, S. B. Zhao, L. S. Song, C. X. Song, Binary superposition mix design method for SFRC Part II: flexural strength and toughness, Advanced Mater. Res. 168-170 (2011) 2191-2194.
DOI: 10.4028/www.scientific.net/amr.168-170.2191
Google Scholar
[18]
JG/T 472-2015, Steel Fiber Reinforced Concrete, China Standard Press, Beijing, (2015).
Google Scholar
[19]
R. Deeb, A. Ghanbari, B. L. Karihaloo, Development of self-compacting high and ultra high performance concretes with and without steel fibres, Cem. Concr. Compos. 34 (2) (2012) 185-190.
DOI: 10.1016/j.cemconcomp.2011.11.001
Google Scholar
[20]
S. Grünewald, J. C. Walraven, Parameter-study on influence of steel fibers and coarse aggregate content on fresh properties of self-compacting concrete, Cem. Concr. Res. 31(12) (2001) 1793-1798.
DOI: 10.1016/s0008-8846(01)00555-5
Google Scholar
[21]
H. B. Dhonde, Y. L. Mo, T. T. C. Hsu, J. Vogel, Fresh and hardened properties of self-consolidating fiber-reinforced concrete, ACI Mater. J. 104 (5) (2007) 491-500.
DOI: 10.14359/18905
Google Scholar
[22]
K. Huang, G. Li, Y. Wang, Properties of high strength self-compacting steel fiber reinforced concrete used in bridge steel-mixes union section, J. Wuhan. Univ. technol. 35(6) (2013) 107-111.
Google Scholar
[23]
C. Wang, H. B. Lin, C. H. Yang, J. X. Ye, G. Bai, Preparation technology of fiber toughened self-compacting high-strength concrete, J. Civil. Archit. Environ. Eng. 35 (2) (2013) 129-134.
Google Scholar
[24]
H. Gao, B. X. Li, G. Cui, J. Zha, Mix proportion design and experimental study on CF55 self-com pacting concrete reinforced by steel fiber, Concr. (8) (2008) 82-83, 107.
Google Scholar
[25]
C. H. Yu, J. Y. Liu, X. Xiao, Mixture ratio design and application of C60 self-compacting concrete reinforced by steel fiber, Concr. (7) (2007) 74-78.
Google Scholar
[26]
A. S. Ei-Dibe, Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers, Mater. Design (30) (2009) 4286-4292.
DOI: 10.1016/j.matdes.2009.04.024
Google Scholar
[27]
B. K. Rao, V. Ravindra, Steel fiber reinforced self-compacting concrete incorporating class F fly ash, Int. J. Eng. Sci. Tech. 2(9) (2010) 4936-4943.
Google Scholar
[28]
B. Akcay, M. A. Tasdemir, Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete, Constr. Build. Mater. 28 (1) (2012) 287-293.
DOI: 10.1016/j.conbuildmat.2011.08.044
Google Scholar
[29]
O. Gencel, W. Brostow, T. Datashvili, M. Thedford, Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash, Compos. Interface (18) (2011) 169-184.
DOI: 10.1163/092764411x567567
Google Scholar
[30]
M. Sahmaran, I. O. Yaman. Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash, Constr. Build. Mater. (21) (2007) 150-156.
DOI: 10.1016/j.conbuildmat.2005.06.032
Google Scholar
[31]
Y. R. Zhao, S. Hao, M. B. Gao, X. Q. Fan, J. N. Shi, Research of steel fiber self-compacting concrete workability and compressive strength, Constr. Technol. 46(3) (2017) 61-64.
Google Scholar
[32]
M. C. Torrijos, B. E. Barragán, R. L. Zerbino. Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes, Constr. Build. Mater. 24(6) (2010) 1078-1085.
DOI: 10.1016/j.conbuildmat.2009.11.008
Google Scholar
[33]
Y. N. Ding, Y. J. Liu, S. G. Liu, H. K. Liu, Study on shear resistance of steel fiber reinforced self-compacting concrete beams, J. Hydraulic Eng. 42(4) (2011) 461-468.
Google Scholar
[34]
M. C. Torrijos, B. E. Barraga´, R. L. Zerbino, Physical-mechanical properties, and mesostructure of plain and fibre reinforced self-compacting concrete, Constr. Build. Mater. 22(8) (2008) 1780-1788.
DOI: 10.1016/j.conbuildmat.2007.05.008
Google Scholar
[35]
H. Oucief, M. F. Habita, B. Redjel. Hybrid fiber reinforced self-compacting concrete: hardened properties, Int. J. Civil. Eng. 4(2) (2006) 77-85.
Google Scholar
[36]
H. S. Cai, Research on mix proportion and mechanical performance of steel fiber reinforced self-compacting concrete, Thesis for Master Degree, Zhengzhou University, China, (2006).
Google Scholar
[37]
E. K. Anastasiou, I. Papayianni, M. Papachristoforou, Behavior of self-compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater. Design 59(6) (2014) 454-460.
DOI: 10.1016/j.matdes.2014.03.030
Google Scholar
[38]
H. K. Liu, Influence of steel fiber on flexural and shear behavior of self-consolidating concrete elements, Thesis for Doctor Degree, Dalian University of Technology, China, (2012).
Google Scholar
[39]
M. Pajak, T. Ponikiewski. Flexural behavior of self-compacting concrete reinforced with different types of steel fibers, Constr. Build. Mater. 47(10) (2013) 397-408.
DOI: 10.1016/j.conbuildmat.2013.05.072
Google Scholar
[40]
M. Uysal, H. Tanyildizi. Estimation of compressive strength of self-compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network, Constr. Build. Mater. 27(1) (2012) 404-414.
DOI: 10.1016/j.conbuildmat.2011.07.028
Google Scholar
[41]
M. Z. Lan, Y. W. Chen, J. B. Yang, C. Y. Kan, Discussion of mixture ratio design method of high strength self-compacting concrete, Concr. 9 (2013) 87-89, 96.
Google Scholar
[42]
X. J. Ji, Study on preparation and application of high strength and high flowability concrete, Thesis for Master Degree, Southwest University of Science and Technology, China, (2010).
Google Scholar
[43]
M. Jalal, M. Fathi, M. Farzad, Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self-compacting concrete, Mech. Mater. 61 (2013) 11-27.
DOI: 10.1016/j.mechmat.2022.104302
Google Scholar
[44]
H. N. Wang, Research on mix design of self-compacting concrete based on special surface area method of aggregates, Thesis for master degree of Zhejiang University, China, (2007).
Google Scholar
[45]
C. Z. Chen, Study on self-compacting performance and engineering application, Thesis for master degree of Beijing University of Technology, China, (2010).
Google Scholar
[46]
M. S. Ashtiani, A. N. Scott, R. P. Dhakal, Mechanical and fresh properties of high-strength self-compacting concrete containing class C fly ash, Constr. Build. Mater. 47(5) (2013) 1217-1224.
DOI: 10.1016/j.conbuildmat.2013.06.015
Google Scholar
[47]
J. Bu, Development of C60 SCC and its application to Shanghai World Financial Center, Build. Constr. 28(2) (2006) 128-130.
Google Scholar
[48]
X. X. Ding, C. Y. Li, Y. Y. Xu, F. L. Li, S. B. Zhao, Experimental study on long-term compressive strength of concrete with manufactured sand, Constr. Build. Mater. 108 (2016) 67-73.
DOI: 10.1016/j.conbuildmat.2016.01.028
Google Scholar
[49]
S. B. Zhao, X. X. Ding, M. S. Zhao, C. Y. Li, S. W. Pei, Experimental study on tensile strength development of concrete with manufactured sand, Constr. Build. Mater. 138 (2017) 247-253.
DOI: 10.1016/j.conbuildmat.2017.01.093
Google Scholar