Numerical Analysis of Mix Proportion of Self-Compacting Concrete Compared to Ordinary Concrete

Article Preview

Abstract:

Steel fiber reinforced concrete (SFRC) is developed traditionally from ordinary concreteadmixed with randomly distributed steel fibers. The matrix of SFRC is always formed by adjustingthe mix proportion used for the ordinary concrete, which plays the role of controlling the properties ofSFRC. In this paper, the mix proportion of self-compacting concrete (SCC) compared with vibrationcompacted concrete (VCC) is statistically analyzed. A predictive formula for water-binder ratio isproposed in relation to the designed compressive strength of SCC and the cement strength affected bymineral admixtures. It is expected to provide reference for the mix proportion design for flowing andhigh-flowing SFRC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-75

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. N. Swamy, H. Stavrides, Influence of the method of fabrication on strength properties of steel fiber concrete, Mater. Struct. 9(52) (1976) 243–253.

DOI: 10.1007/bf02478644

Google Scholar

[2] R. F. Zollo, Fiber-reinforced concrete: an overview after 30 years of development, Cem. Concr. Comps. 19 (1997) 107-122.

DOI: 10.1016/s0958-9465(96)00046-7

Google Scholar

[3] M. L. Zhao, J. Li, D. Law, Study of steel fiber distribution patterns in steel fiber reinforced concrete: An overview, in: X.Q Zhang, S.B. Zhao, Y.M. Xie (Eds.), 3rd International Conference on Civil Engineering, Architecture and Sustainable Infrastructure, DEStech Publications, Inc. 2015, pp.95-102.

Google Scholar

[4] M. L. Zhao, J. Li, D. Law, Effects of flowability on SFRC fibre distribution and properties, Mag. Concr. Res. 69(20) (2017) 1043-1054.

DOI: 10.1680/jmacr.16.00080

Google Scholar

[5] A. A. Shah, Y. Ribakov, Recent trends in steel fibered high-strength concrete, Mater. Design 32 (2011) 4122-4151.

DOI: 10.1016/j.matdes.2011.03.030

Google Scholar

[6] P. S. Song, S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete, Constr. Build. Mater. 18 (2004) 669-673.

DOI: 10.1016/j.conbuildmat.2004.04.027

Google Scholar

[7] W. Abbass, M. I. Khan, S. Mourad, Evaluation of mechanical properties of steel fiber reinforced concrete with different strength of concrete, Constr. Build. Mater. 168 (2018) 556-569.

DOI: 10.1016/j.conbuildmat.2018.02.164

Google Scholar

[8] X. X. Ding, C. Y. Li, B. Han, Y. Z. Lu, S. B. Zhao, Effects of different deformed steel-fibers on preparation and properties of self-compacting SFRC, Constr. Build. Mater. 168 (2018) 471-481.

DOI: 10.1016/j.conbuildmat.2018.02.162

Google Scholar

[9] İ. Şanal, N. Ö. Zihnioğlu, To what extent does the fiber orientation affect mechanical performance? Constr. Build. Mater. 44 (2013) 671-681.

DOI: 10.1016/j.conbuildmat.2013.03.079

Google Scholar

[10] O. Karahan, E. Ozbay, C. D. Atis, M. Lachemi. K. M. A. Hossain, Effects of milled cut steel fibers on the properties of concrete, KSCE J. Civil Eng. 20(7) (2016) 2783-2789.

DOI: 10.1007/s12205-016-0577-3

Google Scholar

[11] JG/T 3064-1999, Steel Fiber Reinforced Concrete, China Standard Press, Beijing, (1999).

Google Scholar

[12] JGJ 55-2011, Specification for Mix Proportion Design of Ordinary Concrete, China Building Industry Press, Beijing, (2011).

Google Scholar

[13] C. Y. Li, S. B. Zhao, X. J. Qian, Effect of sand ratio on thin-plate shearing steel fiber reinforced concrete, J. Build. Mater. 10(2) (2007) 247-252.

Google Scholar

[14] S. B. Zhao, H. Du, X. J. Qian, C. Y. Li, Research on direct mix design method of steel fiber reinforced high-strength concrete, China Civil Eng. J. 41(7) (2008) 1-6.

Google Scholar

[15] S. B. Zhao, C. Y. Li, H. Du, X. J. Qian, Study of steel-fiber reinforced high-strength concrete containing large coarse aggregate, J. Build. Mater. 13(2) (2010) 155-160.

Google Scholar

[16] S. B. Zhao, H. Y. Huo, C. X. Song, L. S. Song, Binary superposition mix design method for SFRC Part I: principle and evaluation, Advanced Mater. Res. 168-170 (2011) 2186-2190.

DOI: 10.4028/www.scientific.net/amr.168-170.2186

Google Scholar

[17] H. Y. Huo, S. B. Zhao, L. S. Song, C. X. Song, Binary superposition mix design method for SFRC Part II: flexural strength and toughness, Advanced Mater. Res. 168-170 (2011) 2191-2194.

DOI: 10.4028/www.scientific.net/amr.168-170.2191

Google Scholar

[18] JG/T 472-2015, Steel Fiber Reinforced Concrete, China Standard Press, Beijing, (2015).

Google Scholar

[19] R. Deeb, A. Ghanbari, B. L. Karihaloo, Development of self-compacting high and ultra high performance concretes with and without steel fibres, Cem. Concr. Compos. 34 (2) (2012) 185-190.

DOI: 10.1016/j.cemconcomp.2011.11.001

Google Scholar

[20] S. Grünewald, J. C. Walraven, Parameter-study on influence of steel fibers and coarse aggregate content on fresh properties of self-compacting concrete, Cem. Concr. Res. 31(12) (2001) 1793-1798.

DOI: 10.1016/s0008-8846(01)00555-5

Google Scholar

[21] H. B. Dhonde, Y. L. Mo, T. T. C. Hsu, J. Vogel, Fresh and hardened properties of self-consolidating fiber-reinforced concrete, ACI Mater. J. 104 (5) (2007) 491-500.

DOI: 10.14359/18905

Google Scholar

[22] K. Huang, G. Li, Y. Wang, Properties of high strength self-compacting steel fiber reinforced concrete used in bridge steel-mixes union section, J. Wuhan. Univ. technol. 35(6) (2013) 107-111.

Google Scholar

[23] C. Wang, H. B. Lin, C. H. Yang, J. X. Ye, G. Bai, Preparation technology of fiber toughened self-compacting high-strength concrete, J. Civil. Archit. Environ. Eng. 35 (2) (2013) 129-134.

Google Scholar

[24] H. Gao, B. X. Li, G. Cui, J. Zha, Mix proportion design and experimental study on CF55 self-com pacting concrete reinforced by steel fiber, Concr. (8) (2008) 82-83, 107.

Google Scholar

[25] C. H. Yu, J. Y. Liu, X. Xiao, Mixture ratio design and application of C60 self-compacting concrete reinforced by steel fiber, Concr. (7) (2007) 74-78.

Google Scholar

[26] A. S. Ei-Dibe, Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers, Mater. Design (30) (2009) 4286-4292.

DOI: 10.1016/j.matdes.2009.04.024

Google Scholar

[27] B. K. Rao, V. Ravindra, Steel fiber reinforced self-compacting concrete incorporating class F fly ash, Int. J. Eng. Sci. Tech. 2(9) (2010) 4936-4943.

Google Scholar

[28] B. Akcay, M. A. Tasdemir, Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete, Constr. Build. Mater. 28 (1) (2012) 287-293.

DOI: 10.1016/j.conbuildmat.2011.08.044

Google Scholar

[29] O. Gencel, W. Brostow, T. Datashvili, M. Thedford, Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash, Compos. Interface (18) (2011) 169-184.

DOI: 10.1163/092764411x567567

Google Scholar

[30] M. Sahmaran, I. O. Yaman. Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash, Constr. Build. Mater. (21) (2007) 150-156.

DOI: 10.1016/j.conbuildmat.2005.06.032

Google Scholar

[31] Y. R. Zhao, S. Hao, M. B. Gao, X. Q. Fan, J. N. Shi, Research of steel fiber self-compacting concrete workability and compressive strength, Constr. Technol. 46(3) (2017) 61-64.

Google Scholar

[32] M. C. Torrijos, B. E. Barragán, R. L. Zerbino. Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes, Constr. Build. Mater. 24(6) (2010) 1078-1085.

DOI: 10.1016/j.conbuildmat.2009.11.008

Google Scholar

[33] Y. N. Ding, Y. J. Liu, S. G. Liu, H. K. Liu, Study on shear resistance of steel fiber reinforced self-compacting concrete beams, J. Hydraulic Eng. 42(4) (2011) 461-468.

Google Scholar

[34] M. C. Torrijos, B. E. Barraga´, R. L. Zerbino, Physical-mechanical properties, and mesostructure of plain and fibre reinforced self-compacting concrete, Constr. Build. Mater. 22(8) (2008) 1780-1788.

DOI: 10.1016/j.conbuildmat.2007.05.008

Google Scholar

[35] H. Oucief, M. F. Habita, B. Redjel. Hybrid fiber reinforced self-compacting concrete: hardened properties, Int. J. Civil. Eng. 4(2) (2006) 77-85.

Google Scholar

[36] H. S. Cai, Research on mix proportion and mechanical performance of steel fiber reinforced self-compacting concrete, Thesis for Master Degree, Zhengzhou University, China, (2006).

Google Scholar

[37] E. K. Anastasiou, I. Papayianni, M. Papachristoforou, Behavior of self-compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater. Design 59(6) (2014) 454-460.

DOI: 10.1016/j.matdes.2014.03.030

Google Scholar

[38] H. K. Liu, Influence of steel fiber on flexural and shear behavior of self-consolidating concrete elements, Thesis for Doctor Degree, Dalian University of Technology, China, (2012).

Google Scholar

[39] M. Pajak, T. Ponikiewski. Flexural behavior of self-compacting concrete reinforced with different types of steel fibers, Constr. Build. Mater. 47(10) (2013) 397-408.

DOI: 10.1016/j.conbuildmat.2013.05.072

Google Scholar

[40] M. Uysal, H. Tanyildizi. Estimation of compressive strength of self-compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network, Constr. Build. Mater. 27(1) (2012) 404-414.

DOI: 10.1016/j.conbuildmat.2011.07.028

Google Scholar

[41] M. Z. Lan, Y. W. Chen, J. B. Yang, C. Y. Kan, Discussion of mixture ratio design method of high strength self-compacting concrete, Concr. 9 (2013) 87-89, 96.

Google Scholar

[42] X. J. Ji, Study on preparation and application of high strength and high flowability concrete, Thesis for Master Degree, Southwest University of Science and Technology, China, (2010).

Google Scholar

[43] M. Jalal, M. Fathi, M. Farzad, Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self-compacting concrete, Mech. Mater. 61 (2013) 11-27.

DOI: 10.1016/j.mechmat.2022.104302

Google Scholar

[44] H. N. Wang, Research on mix design of self-compacting concrete based on special surface area method of aggregates, Thesis for master degree of Zhejiang University, China, (2007).

Google Scholar

[45] C. Z. Chen, Study on self-compacting performance and engineering application, Thesis for master degree of Beijing University of Technology, China, (2010).

Google Scholar

[46] M. S. Ashtiani, A. N. Scott, R. P. Dhakal, Mechanical and fresh properties of high-strength self-compacting concrete containing class C fly ash, Constr. Build. Mater. 47(5) (2013) 1217-1224.

DOI: 10.1016/j.conbuildmat.2013.06.015

Google Scholar

[47] J. Bu, Development of C60 SCC and its application to Shanghai World Financial Center, Build. Constr. 28(2) (2006) 128-130.

Google Scholar

[48] X. X. Ding, C. Y. Li, Y. Y. Xu, F. L. Li, S. B. Zhao, Experimental study on long-term compressive strength of concrete with manufactured sand, Constr. Build. Mater. 108 (2016) 67-73.

DOI: 10.1016/j.conbuildmat.2016.01.028

Google Scholar

[49] S. B. Zhao, X. X. Ding, M. S. Zhao, C. Y. Li, S. W. Pei, Experimental study on tensile strength development of concrete with manufactured sand, Constr. Build. Mater. 138 (2017) 247-253.

DOI: 10.1016/j.conbuildmat.2017.01.093

Google Scholar