Development of Multi-Objective Prediction Model for Wire Electrical Discharge Machining of Inconel 718 Nickel-Based Superalloy

Article Preview

Abstract:

Owing to the fact that conventional Taguchi methods cannot predict the experimentresults of non-level values, this study developed a staged Taguchi neural network prediction modelthat combines the merits of experimental data from the Taguchi method and the learningcapabilities of artificial neural networks. We first used the optimal parameter combinations derivedfrom the L9 orthogonal array experiment data and grey relational analysis as training examples forthe Stage-1 network to construct a preliminary network. Next, we used the crucial factors in theoptimal parameter combinations derived from the grey relational analysis as additional trainingexamples for the Stage-2 network. The results of the staged Taguchi neural network predictionmodel indicate that the prediction performance of the preliminary network in Stage 1 was poor dueto an insufficient number of training examples, while the Stage-2 network produced excellentprediction results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-44

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Singh, R. Gary, Effects of process parameters on material removal rate in WEDM, J. Achieve. Mat. Manuf. Eng., 32 (2009) 70-74.

Google Scholar

[2] V. Parashar, A. Rehman, J. L. Bhagoria, Y. M. Puri, Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L design of experiments, Int. J. Eng. Sci. Technol., 2(5) (2010) 1021-1028.

DOI: 10.4028/www.scientific.net/amm.110-116.1683

Google Scholar

[3] J. C. Rebelo, A. M. Dias, J. L. Lebrun, Influence of EDM pulse energy on the surface integrity of matensitic steels, J. Mat. Proc. Technol., 84 (1998) 90-96.

DOI: 10.1016/s0924-0136(98)00082-x

Google Scholar

[4] B. H. Yan, F. Y. Huang, H. M. Chow, J. Y. Tsai, Micro-hole machining of carbide by electric discharge machining, J. Mat. Proc. Technol., (1999) 139-145.

DOI: 10.1016/s0924-0136(98)00345-8

Google Scholar

[5] H. H. Lee, Taguchi Methods: Principles and Practices of Quality Design, Taipei: Gau Lih Book Co., LTD., (2011).

Google Scholar

[6] Y. C. Lin, A Study on Electrical Discharge Machining and Multiple Quality Characteristics of W/Cu Composites, Master's thesis, Program of Weapon System Eng., Chung Cheng Inst. Technol., National Defense University, (2002).

Google Scholar

[7] M. C. Huang, C. C. Tai, The Effective Factor in the Warpage problem of an Injection- Molded part with a Thin Shell Feature, J. Mat. Proc. Technol., 110(1) (2001) 1-9.

DOI: 10.1016/s0924-0136(00)00649-x

Google Scholar

[8] M. T. Haganm, H. Demuth, M. H. Beale, Neural networks Design, Thomson Learning, (1996).

Google Scholar

[9] W. T. Miller, R. S. Sutton, P. J. Werbos, Neural networks for control, MIT Press, (1990).

Google Scholar

[10] D. A. White, D. A. Sofge Edited, Handbook of intelligent control, Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, (1992).

Google Scholar

[11] W. S. Lin, B. Y. Lee, C. L. Wu, Modeling the surface Roughness and Cutting Force for Turning, J. Mat. Proc. Technol., 108(3) (2001) 286-293.

Google Scholar

[12] J. Z. Wu, Application of Neuro-Fuzzy System and Genetic Algorithms in Multi-objective Machining-parameters Optimization, Master's thesis, Depart. Mech. Eng., National Taiwan Ocean University, (2000).

Google Scholar

[13] C. B. Yang, C. G. Lin, H. L. Chiang, C. C. Chen, Single and multi-objective optimization of Inconel 718 nickel-based superalloy in the wire electrical discharge machining, Int. J. Adv. Manuf. Technol., 93 (2017) 3075-3084.

DOI: 10.1007/s00170-017-0758-3

Google Scholar

[14] W. Y. Fowlkes, C. M. Creveling, Engineering Methods for Robust Product Design: using Taguchi Methods in Technology and Product Development, Addison Wesley Longman, Inc., California, (1995).

DOI: 10.1016/0737-6782(96)90138-1

Google Scholar