[1]
L. Wang, W. Yang, H. Chong, L. Wang, F. Gao, L. Tian, Z. Yang, Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures, Roy. Soc. Chem. 5 (2015) 52388-52394.
DOI: 10.1039/c5ra05861a
Google Scholar
[2]
J. Zou, Q. Zhang, K. Huang, N. Marzari, Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays., J. Phys. Chem. C 114 (2010) 10725-10729.
DOI: 10.1021/jp1011236
Google Scholar
[3]
S. Kathirvel, C. Su, C. Y. Yang, Y. J. Shiao, The growth of TiO2 nanotubes from sputter-deposited Ti film on transparent conducting glass for photovoltaic applications., Vacuum. 118 (2015) 17-25.
DOI: 10.1016/j.vacuum.2014.12.024
Google Scholar
[4]
M. Yang, J. L. Zhu, W. Liu, and J. L. Sun, Novel Photodetectors Based on Double-Walled Carbon Nanotube Film/TiO2 Nanotube Array Heterodimensional Contacts, Nano Res. 4(9) (2011) 901-907.
DOI: 10.1007/s12274-011-0146-5
Google Scholar
[5]
X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, Comparing Graphene-TiO2 Nanowires and Graphene-TiO2 Nanoparticle Composite Photocatalysts., ACS Appl. Mater. Interf. 4 (2012) 3944-3950.
DOI: 10.1021/am300772t
Google Scholar
[6]
C. Liu, Y. Teng, R. Liu, S. Luo, Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application., Carbon, 49 (2011) 5312-5320.
DOI: 10.1016/j.carbon.2011.07.051
Google Scholar
[7]
N. R. Khalid, E. Ahmed, Z. Hong, M. Ahmaed, Enhanced photocatalytic activity of graphene TiO2 composite under visible light irradiation, Curr. Appl. Phys. 13(4) (2013) 659-663.
DOI: 10.1016/j.cap.2012.11.003
Google Scholar
[8]
Q. Zhou, Z. Fang, Graphene modified TiO2 nanotube arrays as an adsorbent in micro solid phase extraction for determination of carbamate pesticides in water samples, Anal. Chim. Acta. 869 (2015) 43-49.
DOI: 10.1016/j.aca.2015.02.019
Google Scholar
[9]
M. J. McAllister, L. L. Li, D. H. Adamson, H. C. Schniepp, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater. 19(18) (2007) 4396-4404.
DOI: 10.1021/cm0630800
Google Scholar
[10]
K. Nakata, A. Fujishima, TiO2 photocatalysis:Design and applications, J. Photochem. Photobiol. C. Photochem. Rev. 13 (2012) 169-189.
Google Scholar
[11]
V. Etacheri, C. Di. Valentin, J. Schneider, D. Bahnemann, S. C. Pillai, Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments, J. Photochem. Photobiol. C. Photochem. Rev. 25 (2015) 1-29.
DOI: 10.1016/j.jphotochemrev.2015.08.003
Google Scholar
[12]
S. Chu, K. Wada, S. Inoue, S. Todoroki, Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and Sol−Gel Process, Chem. Mater. 14 (2002) 266-272.
DOI: 10.1021/cm0105918
Google Scholar
[13]
N. G. Park, G. Schlichthorl, J. van der Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4, J. Phys. Chem. B. 103 (1999).
DOI: 10.1002/chin.199927260
Google Scholar
[14]
X. Qu, L. Cao, F. Du, Frabrication of ordered arrays of CNT/TiO2 nanotubes and their photocatalytic properties, Roy. Soc. Chem. 5 (2015) 20976-20980.
DOI: 10.1039/c4ra17002d
Google Scholar
[15]
Y. Hie, L. Wei, Q. Li, Y. Chen, S. Yan, J. Jiao, G. Liu, L. Mei, High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays, Nanotechnology, 25 (2014) 075202-6.
DOI: 10.1088/0957-4484/25/7/075202
Google Scholar
[16]
K. Li, Z. Xie, S. Adams, A reliable TiO2 nanotube membrane transfer method and its application in photovoltaic devices, Electrochimica Acta. 62 (2012) 116-123.
DOI: 10.1016/j.electacta.2011.11.118
Google Scholar
[17]
R. Passalacqua, C. Ampelli, S. Perathoner, G. Centi, Self-Standing TiO2 nanotubular Membranes for Sustainable Production of Energy, Chem. Eng. Trans. 41 (2014) 319-324.
Google Scholar
[18]
K. Zhou, Y. Zhu, X. Yang., Preparation of graphene-TiO2 composites with enhanced photocatalytic activity, New J. Chem. 35 (2011) 353-359.
Google Scholar
[19]
J. Lin, J. Chen, X. Chen, Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization., Electrochem. Commun. 12 (2010) 1062-1065.
DOI: 10.1016/j.elecom.2010.05.027
Google Scholar
[20]
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, Transfer of large area graphene films for high performance transparent conductive electrodes, Nano Lett. 9(12) (2009) 4359-4363.
DOI: 10.1021/nl902623y
Google Scholar
[21]
R. Abo, N. A. Kummer, B. J. Merkel, Optimized photodegradation of Bisphenol A in water using ZnO, TiO2 and SnO2 photocatalysts under UV radiation as a decontamination procedure, Drink. Water Eng. Sci. 9 (2016) 27-35.
DOI: 10.5194/dwes-2016-5-rc1
Google Scholar
[22]
S. Noothongkaew, O. Thumthan, K. S. An, Minimal layer graphene/TiO2 nanotube membranes used for enhancement of UV photodetectors, Mater. Lett. 218 (2018) 274–279.
DOI: 10.1016/j.matlet.2018.02.033
Google Scholar
[23]
N. Butrach, O. Thumthan, S. Noothongkaew, Characterization of Anatase and Rutile Phase of TiO2 Nanostructures with Different Thermal Annealing, J. Nanomater. Mol. Nanotechnol. 7(3) (2018) 1-6.
DOI: 10.4172/2324-8777.1000247
Google Scholar
[24]
A. Haring, A. Morris, M. Hu, Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications, Mater. 5 (2012) 1890-(1909).
DOI: 10.3390/ma5101890
Google Scholar
[25]
H. P. Quiroz, F. Quintero, P. J. Arias, A. Dussan, H. R. Zea, Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process, J. Phys.: Conf. Series 614 (2015).
DOI: 10.1088/1742-6596/614/1/012001
Google Scholar
[26]
M. Naghizadeh, S. Ghannadi, H. Abdizadeh M. R. Golobostanfard, Effect of fluoride concentration and water content on morphology of titania nanotubes in ethylene glycol solution, Adv. Mater. Res. 829 (2014) 907-911.
DOI: 10.4028/www.scientific.net/amr.829.907
Google Scholar
[27]
N. Biyikli, O. Aytur, I. Kimukin, High-performance AlGaN metal–semiconductor–metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement, Appl. Phys. Lett. 81 (2002) 3272.
DOI: 10.1002/pssc.200303518
Google Scholar
[28]
S. Yoriya, M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes, J. Phys. Chem. C 111 (2007) 13770-13776.
DOI: 10.1021/jp074655z
Google Scholar
[29]
Y. Jin, J. Wang, B. Sun, Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO nanoparticles. Nano Lett. 8 (2008) 1649-1653.
DOI: 10.1021/nl0803702
Google Scholar