Sea Urchin-Like Gold Nanoparticles: Controllable Preparation and SERS Properties

Article Preview

Abstract:

Here, we report on a seed-mediated growth method for the production of goldnanoparticles that have a number (>4) of branches ultimately resembling the shape of sea urchins.These nano-urchins are produced in high yield and exhibit unique optical properties. By altering theamount of gold seeds, HAuCl4 and hydroquinone in the reaction system, we managed to tune thesize of the SGNPs from 40 to 180 nm. Their extinction spectrum shows a shift in the plasmonresonance from 550 to 670 nm. The SERS spectrum of these products prepared were detected andcompared. By optimizing the conditions, SGNPs with uniform morphology, good monodispersityand strong SERS effect were prepared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-5

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bonifacio, S. Dalla Marta, R. Spizzo, S. Cervo, A. Steffan, A. Colombatti, V. Sergo, Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study, Anal. Bioanal. Chem. 406(9-10) (2014).

DOI: 10.1007/s00216-014-7622-1

Google Scholar

[2] Y. Fang, N. H. Seong, D. D. Dlott, Measurment of the distribution of site enhancements in surface-enhanced Raman scattering, Sci. 321(5887) (2008) 388-392.

DOI: 10.1126/science.1159499

Google Scholar

[3] K. A. Willets, Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics, Anal. Bioanal. Chem. 394(1) (2009) 85-94.

DOI: 10.1007/s00216-009-2682-3

Google Scholar

[4] J. I. Gersten, The effect of surface roughness on surface enhanced Raman scattering, J. Chem. Phys. 72(10) (1980) 5779-5780.

DOI: 10.1063/1.439002

Google Scholar

[5] M. E. Hankus, H. Li, G. J. Gibson, B. M. Cullum, Surface-enhanced Raman scattering-based nanoprobe for high-resolution, non-scanning chemical imaging, Anal. Chem. 78(21) (2006) 7535-7546.

DOI: 10.1021/ac061125a

Google Scholar

[6] D. Seo, C. I. Yoo, I. S. Chung, S. M. Park, S. Ryu, H. J. Song, Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedral, J. Phys. Chem. C 112(7) (2008).

DOI: 10.1021/jp7109498.s002

Google Scholar

[7] J. Verma, H. A. Van Veen, S. Lal, C. J. F. Van Noorden, Wet Chemistry Approaches for Synthesis of Gold Nanospheres, Nanorods and Nanostars, Curr. Nanosci. 10(5) (2014) 660-669.

DOI: 10.2174/1573413710666140526232421

Google Scholar

[8] H. K. Yuan, C. G. Khoury, C. M. Wilson, G. A. Grant, A. J. Bennett, T. Vo-Dinh, In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars, Nanomed-Nanotechnol. Biol. Med. 8(8) (2012) 1355-1363.

DOI: 10.1016/j.nano.2012.02.005

Google Scholar

[9] C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jaekel, G. Laurent, L. Douillard, F. Charra, Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars, Nano Lett. 11(2) (2011) 402-407.

DOI: 10.1021/nl103007m

Google Scholar

[10] X. Han, D. Wang, J. Huang, D. Liu, T. You, Ultrafast growth of dendritic gold nanostructures and their applications in methanol electro-oxidation and surface-enhanced Raman scattering, J. Colloid Interf. Sci. 354(2) (2011) 577-584.

DOI: 10.1016/j.jcis.2010.11.045

Google Scholar

[11] Q. Su, X. Ma, J. Dong, C. Jiang, W. Qian, A Reproducible SERS Substrate Based on Electrostatically Assisted APTES-Functionalized Surface-Assembly of Gold Nanostars, ACS Appl. Mater. Interf. 3(6) (2011) 1873-1879.

DOI: 10.1021/am200057f

Google Scholar

[12] M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Q. Wu, Shape-dependent surface-enhanced Raman scattering in gold-Ramanprobe-silica sandwiched nanoparticles for biocompatible applications, Nanotech. 23(11) (2012) 115501.

DOI: 10.1088/0957-4484/23/11/115501

Google Scholar