Variable Thickness Rolling - A New Process for Rolled Profile Strips

Article Preview

Abstract:

As a result of more requirements for improving natural environment and economic environment, the manufacturing of light weight components is becoming increasingly vital in industrial development. Variable thickness rolling (VTR)-a new process for rolled profile strips (RPS) is proposed in this paper. This so-called “variable thickness rolling” is based on the utilization of a special roll system that causes the material to flow in latitudinal direction. The rolled profile strips with defined cross-sections are obtained by this process. The elastic-plastic finite element model is established to analyze the forming principle. The simulation results agree with experimental data on the whole.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kleiner, S. Chatti, and A. Klaus: Metal forming techniques for lightweight construction, J. Mater. Process. Tech. 177 (2006), pp.2-7.

Google Scholar

[2] H. Choi, M. Koc¸ and J. Ni: Determination of optimal loading profiles in warm hydroforming of lightweight materials, J. Mater. Process. Tech. 190 (2007), pp.230-242.

DOI: 10.1016/j.jmatprotec.2007.02.040

Google Scholar

[3] X. H. Liu and G. J. Zhang: On the law of mass conservation for variable gauge rolling, Sci. China, 58 (2013), pp.1769-1774.

Google Scholar

[4] X. H. Liu, Prospects for variable gauge rolling: technology, theory and application, J. Iron Steel Res. Int. 18 (2011), pp.1-7.

Google Scholar

[5] S. W. Han, T. W. Hwang, I. Y. Oh, and Y. H. Moon: Feasibility studies on manufacturing tailored blanks by rolling partially stacked blanks, J. Mech. Sci. Technol. 32 (2018), pp.1575-1584.

DOI: 10.1007/s12206-018-0312-8

Google Scholar

[6] S. W. Han, T. W. Hwang, I. Y. Oh M. S. Choi, and Y. H. Moon: Manufacturing of tailor-rolled blanks with thickness variations in both the longitudinal and latitudinal directions, J. Mater. Process. Tech. 256 (2018), pp.172-182.

DOI: 10.1016/j.jmatprotec.2018.02.013

Google Scholar

[7] O. Engler, C. Schäfera , H.-J. Brinkmana, J. Brechtb, P. Beiterb, and K. NijhofbaHydro: Flexible rolling of aluminium alloy sheet-Process optimization andcontrol of materials properties, J. Mater. Process. Tech. 229 (2016), pp.139-148.

DOI: 10.1016/j.jmatprotec.2015.09.010

Google Scholar

[8] R. H. Lu, X. H. Liu, S.T. Fu, Z. G. Xu, S. D. Chen, X. L. Hu, and L. Z. Liu: Experiment and simulation for the crushing of tailor rolled tubes with various geometric parameters, Int. J. Mech. Sci. 136 (2018), pp.371-395.

DOI: 10.1016/j.ijmecsci.2017.12.043

Google Scholar

[9] R. H. Lu, W. Z. Gao, X. L. Hu, W. H. Liu,Y. W. Liu, and X. H. Liu: Crushing analysis and crashworthiness optimization of tailor rolled tubes with variation of thickness and material properties, Int. J. Mech. Sci. 136 (2018), pp.67-84.

DOI: 10.1016/j.ijmecsci.2017.12.020

Google Scholar

[10] R. H. Lu, X. H. Liu, S. D. Chen, X. L. Hu, and L. Z. Liu: Axial crashing analysis for tailor rolled square tubes with axially graded both wall thickness and material strength, Thin. Wall. Struct. 117 (2017), pp.10-24.

DOI: 10.1016/j.tws.2017.04.001

Google Scholar