Three Dimensional Finite Element Simulation of Strip Shape and Flatness of High Strength Steel

Article Preview

Abstract:

High-strength steel is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel. Strip shape is an important factor affecting the strip quality significantly for the rolled products. Because of the complex influence factors of plate shape and profile, shape detection and control technology have not been solved, especially for high strength steel rolling. In this paper, a novel three dimensional finite element simulation of the strip shape and flatness of high strength steel has been proposed. The material constitutive model has been built up based on experimental results through the Gleeble 3800 Thermal Simulator under different temperatures and stain rates. The modelling of roll elastic deformation system, roll gap profile and edge drop has been set up systematically considering the influence of the work roll transverse shifting and roll bending. Results have shown that both higher bending force and more roll shifting will significantly reduce the strip crown, and obtain improved edge drop distribution as well. The proposed numerical model has been validated through hot rolling experiments in 4-high rolling mills.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-245

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ginzburg VB (1994) Profile and flatness of flat rolled products - part I. United Engineering, Inc., Pittsburgh, USA.

Google Scholar

[2] Z. Y. Jiang (2011). Mechanics of Cold Rolling of Thin Strip, Numerical Analysis - Theory and Application, Prof. Jan Awrejcewicz (Ed.), ISBN: 978-953-307-389-7, InTech.

Google Scholar

[3] Z.Y. Jiang, H.T. Zhu, A.K. Tieu, Study of work roll edge contact in asymmetrical rolling by modifid influence function method. J. Mater. Sci. Technol. 162-163 (2005) 512-518.

DOI: 10.1016/j.jmatprotec.2005.02.103

Google Scholar

[4] Z.Y. Jiang, A.K. Tieu, A 3-D finite element method analysis of cold rolling of thin strip with friction variation, Tribol. Int., 37 (2004) 185-191.

DOI: 10.1016/s0301-679x(03)00049-5

Google Scholar

[5] D.C. Wang, H.M. Liu, A model coupling method for shape prediction, J. Iron and Steel Res., Int., 19 (2012) 22-27.

Google Scholar

[6] X.M. Zhang, Z.Y. Jiang, A.K. Tieu, X.H. Liu, G.D. Wang, Numerical modelling of the thermal deformation of CVC roll in hot strip rolling, J. Mater. Proc. Technol., 130-131 (2002) 219-223.

DOI: 10.1016/s0924-0136(02)00736-7

Google Scholar

[7] Z.Y. Jiang, H.T. Zhu, A.K. Tieu and W.H. Sun, Modeling of work roll edge contact in thin strip rolling. J. Mater. Proc. Technol., 155-156 (2004) 1280-1285.

DOI: 10.1016/j.jmatprotec.2004.04.293

Google Scholar

[8] K. Linghu, Z.Y. Jiang, J. Li, D. Wei, J. Xu, X. Zhang and X. Zhao, 3D FEM analysis of strip shape during multi-pass rolling in a 6 high CVC cold rolling mill, Int. J. Advanced Manufacturing Technol., 74(2014) 1733-1745.

DOI: 10.1007/s00170-014-6069-z

Google Scholar

[9] Z.Y. Jiang, H.T. Zhu, A.K. Tieu, Mechanics of roll edge contact in cold rolling of thin strip, Int. J. Mech. Sci., 48(2006) 697-706.

DOI: 10.1016/j.ijmecsci.2006.01.017

Google Scholar

[10] D.C. Wang, H.M. Liu and J. Liu, Research and development trend of shape control of cold rolling strip, Chin. J. Mech. Eng 30(2017) 1248-1261.

DOI: 10.1007/s10033-017-0163-8

Google Scholar

[11] X.H. Liu, X. Shi, S.Q. Li, J.Y. Xu and G.D. Wang, FEM analysis of rolling pressure along strip width in cold rolling process, J. Iron and Steel Res., Int., 14 (2007) 22-26.

DOI: 10.1016/s1006-706x(07)60068-5

Google Scholar

[12] Y.J. Liu, A.K. Tieu, D.D. Wang, W.Y.D. Yuen, Friction measurement in cold rolling, J. Mater. Proc. Technol., 111(2001) 142-145.

Google Scholar

[13] Z.Y. Jiang, X.Z. Du, Y.B.Du, D.B. Wei and M. Hay, Modeling of strip shape during cold rolling of thin strip, Key Eng. Mater., 443 (2010) 9-14.

DOI: 10.4028/www.scientific.net/kem.443.9

Google Scholar

[14] J.K. Alexander, E.W. Markus and Z. Klaus, Enhanced strip=roll coupling concepts for the numerical simulation of flat hot rolling, Acta Mechanica, 224 (2013) 957-983.

DOI: 10.1007/s00707-012-0795-9

Google Scholar

[15] J.G. Cao, X.T. Chai, Y.L. Li, N. Kong, S.H. Jia and W. Zeng, Integrated design of roll contours for strip edge drop and crown control in tandem cold rolling mills, J. Mater. Proc. Technol., 252 (2018) 432-439.

DOI: 10.1016/j.jmatprotec.2017.09.038

Google Scholar

[16] A. Aljabri, Z.Y. Jiang, D. Wei, X.D. Wang and H. Tibar, Thin strip profile control capability of roll crossing and shifting in cold rolling mill, Mater. Sci. Forum, 773-774 (2014) 70-78.

DOI: 10.4028/www.scientific.net/msf.773-774.70

Google Scholar

[17] L.P. Yang and B.Q. Yu, Shape detecting and shape control of cold rolling strip, Advanced Mater. Res., 311-313 (2011) 902-905.

DOI: 10.4028/www.scientific.net/amr.311-313.902

Google Scholar

[18] H. Yu, D.Y. Gong, Z.Y. Jiang, J.Z. Xu, D.H. Zhang and X.H. Liu, Effect of initial crown on shape of hot rolled strip, J. Iron and Steel Res., Int., 16 (2009) 32-34.

DOI: 10.1016/s1006-706x(10)60007-6

Google Scholar

[19] S. Abdelkhalek, P. Montmitonnet, N. Legrand and P. Buessler, Coupled approach for flatness prediction in cold rolling of thin strip, Int. J. Mech. Sci., 53 (2011) 661-675.

DOI: 10.1016/j.ijmecsci.2011.04.001

Google Scholar

[20] H.J. Li, J.Z. Xu, G.D. Wang, L.J. Shi and Y. Xiao, Development of strip flatness and crown control model for hot strip mills, J. Iron and Steel Res., Int., 17 (2010) 21-27, 45.

DOI: 10.1016/s1006-706x(10)60067-2

Google Scholar