[1]
M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engle, Microforming, CIRP Manuf. Technol. 50 (2001) 445-462.
DOI: 10.1016/s0007-8506(07)62991-6
Google Scholar
[2]
F. Vollertsen, H. S. Niehoff, Z. Hu, State of the art in micro forming, Int. J. Mach. Tools Manul. 46 (2006) 1172-1179.
DOI: 10.1016/j.ijmachtools.2006.01.033
Google Scholar
[3]
F. Vollertsen, D. Biermann, H. N. Hansen, I. S. Jawahir, K. Kuzman, Size effects in manufacturing of metallic components, CIRP Manuf. Technol. 50 (2009) 566-587.
DOI: 10.1016/j.cirp.2009.09.002
Google Scholar
[4]
T. A. Kals, R. Eckstein, Miniaturization in sheet metal working, Journal of Materials Processing Technology 103 (2000) 95–101.
DOI: 10.1016/s0924-0136(00)00391-5
Google Scholar
[5]
A. Messner, U. Engel, R. Kals, F. Vollertsen, Size effect in the FE-simulation of micro-forming processes, Journal of Materials Processing Technology 45 (1994) 371–376.
DOI: 10.1016/0924-0136(94)90368-9
Google Scholar
[6]
J. T. Gau, C. Principe, J. Wang, An experimental study on size effects on flow stress and formability of aluminm and brass for microforming, Journal of Materials Processing Technology 184 (2007) 42–46.
DOI: 10.1016/j.jmatprotec.2006.11.003
Google Scholar
[7]
L. V. Raulea, A. M. Goijaerts, L. E. Govaert, F. P. T. Baaijens, Size effects in the processing of thin metal sheets, Journal of Materials Processing Technology 115 (2001) 44–48.
DOI: 10.1016/s0924-0136(01)00770-1
Google Scholar
[8]
J. F. Michel, P. Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, Journal of Materials Processing Technology 141 (2003) 439–446.
DOI: 10.1016/s0924-0136(03)00570-3
Google Scholar
[9]
F. H. Yeh, C. L. Li, Y. H. Lu, Study of thickness and grain size effects on material behavior in micro-forming, Journal of Materials Processing Technology 201 (2008) 237–241.
DOI: 10.1016/j.jmatprotec.2007.11.138
Google Scholar
[10]
U. Engle, R. Eckstein, Microforming-from basic research to its realization, Journal of Materials Processing Technology 125-126 (2002) 35-44.
DOI: 10.1016/s0924-0136(02)00415-6
Google Scholar
[11]
F. Vollertsen, Z. Hu, H. S. Niehoff, et al., State of the art in micro forming and investigations into micro deep drawing, Journal of Materials Processing Technology 151 (2002) 70–79.
DOI: 10.1016/j.jmatprotec.2004.04.266
Google Scholar
[12]
L. Peng, F. Liu, J. Ni, X. Lai, Size effects in thin sheet metal forming and its elastic-plastic constitutive model, Materials & Design 28 (2007) 1731–1736.
DOI: 10.1016/j.matdes.2006.02.011
Google Scholar
[13]
W. L. Chan, M. W. Fu, Lu, J. Lu, J. G. Liu, Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater. Sci. Eng. A 527 (2010), 6638–6648.
DOI: 10.1016/j.msea.2010.07.009
Google Scholar
[14]
M. W. Fu, W. L. Chan, Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater. Des. 32 (2011), 4738–4746.
DOI: 10.1016/j.matdes.2011.06.039
Google Scholar
[15]
C. Keller, E. Hug, X. Feaugas, Microstructural size effects on mechanical properties of high purity nickel. Int. J. Plast. 27 (2011), 635–654.
DOI: 10.1016/j.ijplas.2010.08.002
Google Scholar
[16]
C. Wang, J. Xu, P. Zhang, D. Shan, B. Guo, Plastic deformation size effects in micro-compression of pure nickel with a few grains across diameter. Mater. Sci. Eng. A 636 (2015), 352–360.
DOI: 10.1016/j.msea.2015.03.087
Google Scholar
[17]
D. K. Leu, Modeling of size effect on tensile flow stress of sheet metal in microforming, ASME J. Manuf. Sci. Eng. 131(1) (2009) 011002.
DOI: 10.1115/1.3039520
Google Scholar
[18]
X. M. Lai, L. F. Peng, P. Hu, S. H. Lan, J. Ni, Material behavior modelling in micro/meso-scale forming process with considering size/scale effects, Computational Materials Science 43 (2008) 1003-1009.
DOI: 10.1016/j.commatsci.2008.02.017
Google Scholar
[19]
Q. T. Pham, B. H. Lee, K. C. Park, and Y. S. Kim, Influence of the post-necking prediction of hardening law on the theoretical forming limit curve of aluminium sheets, International Journal of Mechanical Science 140 (2018) 521-536.
DOI: 10.1016/j.ijmecsci.2018.02.040
Google Scholar
[20]
LS-OPT, LSTC, http://www.lstc.com.
Google Scholar
[21]
JSTAMP/NV, JSOL Corporation, https://cae.jsol.co.jp/en.
Google Scholar
[22]
F. Vollertsen, Z. Hu, H. S. Niehoff, C. Theiler, State of the art in micro forming and investigations into micro deep drawing, Journal of Materials Processing Technology 151 (2004) 70–79.
DOI: 10.1016/j.jmatprotec.2004.04.266
Google Scholar
[23]
X. Lai, L. Peng, P. Hu, S. Lan, J. Ni, Material behaviour modelling in micro/meso-scale forming process with considering size/scale effects, Computational Materials Science 43 (2008) 1003–1009.
DOI: 10.1016/j.commatsci.2008.02.017
Google Scholar
[24]
R. Armstrong, On size effects in polycrystal plasticity, Journal of the Mechanics and Physics of Solids 9 (1961) 196–199.
Google Scholar
[25]
R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates, Philosophical Magazine 73 (1961) 45–58.
DOI: 10.1080/14786436208201857
Google Scholar
[26]
E. Schmid, W. Boas, Plasticity of crystals with special reference to metals, Chapman & Hall Ltd, London, (1968).
Google Scholar
[27]
H. Mecking, U. F. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica 29 (1981) 1865–1875.
DOI: 10.1016/0001-6160(81)90112-7
Google Scholar
[28]
B. Clausen, T. Lorentzen, T. Leffers, Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses, Acta Materialia 46 (1998) 3087–3098.
DOI: 10.1016/s1359-6454(98)00014-7
Google Scholar
[29]
L. Peng, X. Lai, H. J. Lee, J. H. Song, J. Ni, Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model, Materials Science and Engineering A, 526 (2009) 93-99.
DOI: 10.1016/j.msea.2009.06.061
Google Scholar