Ultra-Thin Sheet Forming Analyses Considering Size Effects

Article Preview

Abstract:

Based on robust numerical formulations and various material models, finite element (FE) analysis becomes a powerful tool in conventional sheet metal forming process. Unfortunately, the present constitutive equations irrelevant to thickness that describe well conventional sheet deformation modes have difficulties being applied directly to ultra-thin sheet deformation modes. In the present study, a constitutive equation considering size effect is established by introducing a scale factor that represents size effects through thickness and width directions. Uniaxial tensile tests were used to evaluate the scale factor of different thicknesses together with the parameter identification. The developed constitutive equation reveals that thickness is the most important factor effecting on the constitutive relation of ultra-thin sheet. 2D draw forming process of C7035 ultra-thin sheet is analyzed using JSTAMP/NV introducing the developed constitutive equation. The analysis results show that there are obvious differences in the punch forces and loading geometries according to the size effect through thickness direction. Specimen width has slight effect on the flow stress although specimen thickness has strong effect on the flow stress. It is expected that the proposed constitutive equation gives good applicability to FE analysis of micro-scale forming.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

295-304

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engle, Microforming, CIRP Manuf. Technol. 50 (2001) 445-462.

DOI: 10.1016/s0007-8506(07)62991-6

Google Scholar

[2] F. Vollertsen, H. S. Niehoff, Z. Hu, State of the art in micro forming, Int. J. Mach. Tools Manul. 46 (2006) 1172-1179.

DOI: 10.1016/j.ijmachtools.2006.01.033

Google Scholar

[3] F. Vollertsen, D. Biermann, H. N. Hansen, I. S. Jawahir, K. Kuzman, Size effects in manufacturing of metallic components, CIRP Manuf. Technol. 50 (2009) 566-587.

DOI: 10.1016/j.cirp.2009.09.002

Google Scholar

[4] T. A. Kals, R. Eckstein, Miniaturization in sheet metal working, Journal of Materials Processing Technology 103 (2000) 95–101.

DOI: 10.1016/s0924-0136(00)00391-5

Google Scholar

[5] A. Messner, U. Engel, R. Kals, F. Vollertsen, Size effect in the FE-simulation of micro-forming processes, Journal of Materials Processing Technology 45 (1994) 371–376.

DOI: 10.1016/0924-0136(94)90368-9

Google Scholar

[6] J. T. Gau, C. Principe, J. Wang, An experimental study on size effects on flow stress and formability of aluminm and brass for microforming, Journal of Materials Processing Technology 184 (2007) 42–46.

DOI: 10.1016/j.jmatprotec.2006.11.003

Google Scholar

[7] L. V. Raulea, A. M. Goijaerts, L. E. Govaert, F. P. T. Baaijens, Size effects in the processing of thin metal sheets, Journal of Materials Processing Technology 115 (2001) 44–48.

DOI: 10.1016/s0924-0136(01)00770-1

Google Scholar

[8] J. F. Michel, P. Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, Journal of Materials Processing Technology 141 (2003) 439–446.

DOI: 10.1016/s0924-0136(03)00570-3

Google Scholar

[9] F. H. Yeh, C. L. Li, Y. H. Lu, Study of thickness and grain size effects on material behavior in micro-forming, Journal of Materials Processing Technology 201 (2008) 237–241.

DOI: 10.1016/j.jmatprotec.2007.11.138

Google Scholar

[10] U. Engle, R. Eckstein, Microforming-from basic research to its realization, Journal of Materials Processing Technology 125-126 (2002) 35-44.

DOI: 10.1016/s0924-0136(02)00415-6

Google Scholar

[11] F. Vollertsen, Z. Hu, H. S. Niehoff, et al., State of the art in micro forming and investigations into micro deep drawing, Journal of Materials Processing Technology 151 (2002) 70–79.

DOI: 10.1016/j.jmatprotec.2004.04.266

Google Scholar

[12] L. Peng, F. Liu, J. Ni, X. Lai, Size effects in thin sheet metal forming and its elastic-plastic constitutive model, Materials & Design 28 (2007) 1731–1736.

DOI: 10.1016/j.matdes.2006.02.011

Google Scholar

[13] W. L. Chan, M. W. Fu, Lu, J. Lu, J. G. Liu, Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater. Sci. Eng. A 527 (2010), 6638–6648.

DOI: 10.1016/j.msea.2010.07.009

Google Scholar

[14] M. W. Fu, W. L. Chan, Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater. Des. 32 (2011), 4738–4746.

DOI: 10.1016/j.matdes.2011.06.039

Google Scholar

[15] C. Keller, E. Hug, X. Feaugas, Microstructural size effects on mechanical properties of high purity nickel. Int. J. Plast. 27 (2011), 635–654.

DOI: 10.1016/j.ijplas.2010.08.002

Google Scholar

[16] C. Wang, J. Xu, P. Zhang, D. Shan, B. Guo, Plastic deformation size effects in micro-compression of pure nickel with a few grains across diameter. Mater. Sci. Eng. A 636 (2015), 352–360.

DOI: 10.1016/j.msea.2015.03.087

Google Scholar

[17] D. K. Leu, Modeling of size effect on tensile flow stress of sheet metal in microforming, ASME J. Manuf. Sci. Eng. 131(1) (2009) 011002.

DOI: 10.1115/1.3039520

Google Scholar

[18] X. M. Lai, L. F. Peng, P. Hu, S. H. Lan, J. Ni, Material behavior modelling in micro/meso-scale forming process with considering size/scale effects, Computational Materials Science 43 (2008) 1003-1009.

DOI: 10.1016/j.commatsci.2008.02.017

Google Scholar

[19] Q. T. Pham, B. H. Lee, K. C. Park, and Y. S. Kim, Influence of the post-necking prediction of hardening law on the theoretical forming limit curve of aluminium sheets, International Journal of Mechanical Science 140 (2018) 521-536.

DOI: 10.1016/j.ijmecsci.2018.02.040

Google Scholar

[20] LS-OPT, LSTC, http://www.lstc.com.

Google Scholar

[21] JSTAMP/NV, JSOL Corporation, https://cae.jsol.co.jp/en.

Google Scholar

[22] F. Vollertsen, Z. Hu, H. S. Niehoff, C. Theiler, State of the art in micro forming and investigations into micro deep drawing, Journal of Materials Processing Technology 151 (2004) 70–79.

DOI: 10.1016/j.jmatprotec.2004.04.266

Google Scholar

[23] X. Lai, L. Peng, P. Hu, S. Lan, J. Ni, Material behaviour modelling in micro/meso-scale forming process with considering size/scale effects, Computational Materials Science 43 (2008) 1003–1009.

DOI: 10.1016/j.commatsci.2008.02.017

Google Scholar

[24] R. Armstrong, On size effects in polycrystal plasticity, Journal of the Mechanics and Physics of Solids 9 (1961) 196–199.

Google Scholar

[25] R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates, Philosophical Magazine 73 (1961) 45–58.

DOI: 10.1080/14786436208201857

Google Scholar

[26] E. Schmid, W. Boas, Plasticity of crystals with special reference to metals, Chapman & Hall Ltd, London, (1968).

Google Scholar

[27] H. Mecking, U. F. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica 29 (1981) 1865–1875.

DOI: 10.1016/0001-6160(81)90112-7

Google Scholar

[28] B. Clausen, T. Lorentzen, T. Leffers, Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses, Acta Materialia 46 (1998) 3087–3098.

DOI: 10.1016/s1359-6454(98)00014-7

Google Scholar

[29] L. Peng, X. Lai, H. J. Lee, J. H. Song, J. Ni, Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model, Materials Science and Engineering A, 526 (2009) 93-99.

DOI: 10.1016/j.msea.2009.06.061

Google Scholar