High Temperature Deformation Behavior and Processing Maps of AZ31 Alloy Deformed in Tension versus Compression

Article Preview

Abstract:

The effect of the applied state-of-stress on the processing maps depicting the mechanisms for hot working of hot extruded Mg-3Al-1Zn alloy has been evaluated. Flow stresses at various temperatures in the range 300 – 500 °C and strain rates in the range 0.0003 – 1 s-1 have been measured by deforming in compression and in tension. Processing maps have been developed from the respective flow stress data at a strain of 0.1. The maps are essentially similar irrespective of the mode of deformation – compression or tension, and exhibited two domains in the temperature and strain rate ranges: (1) 375 – 500 °C and 0.0003 – 0.01 s-1, and (2) 450 – 500 °C and 0.1 – 1 s-1. On the basis of slower strain rates, high tensile ductility, and the apparent activation energy (152 kJ/mole closer to that for self-diffusion), Domain #1 is interpreted in terms of the occurrence of climb controlled dynamic recrystallization. In Domain #2, which occurs at higher strain rates and has an apparent activation energy near to 165 kJ/mole, dynamic recrystallization occurs that involves second order pyramidal slip {11-22} <11-2-3> and recovery by cross-slip of screw dislocations. The state-of-stress imposed on the specimen (compression or tension) does not have any significant effect on the processing maps or the kinetics of hot deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

305-314

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Jin, J. Dong, R. Wang, L.M. Peng, Effects of hot rolling processing on microstructure and mechanical properties of Mg-3%Al-1%Zn alloy sheet, Mater. Sci. Eng. A 527 (2010) 1970-1974.

DOI: 10.1016/j.msea.2009.11.047

Google Scholar

[2] T. Murai, S-I .Matsuoka, S. Miyamoto, Y. Oki, Effect of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions, J. Mater. Proc. Tech 141 (2003) 207-212.

DOI: 10.1016/s0924-0136(02)01106-8

Google Scholar

[3] G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Esadiqi, S. Yue, The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet, Mater. Sci. Eng. A 487 (2008) 243-250.

DOI: 10.1016/j.msea.2007.10.064

Google Scholar

[4] Y.V.R.K. Prasad, K.P. Rao, Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy, Mater. Des. 30 (2009) 3723-3730.

DOI: 10.1016/j.matdes.2009.02.006

Google Scholar

[5] Y.V.R.K. Prasad, K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesiuim alloy plate: Anisotropy of hot workability, Mater. Sci. Eng. A 487 (2008) 316-327.

DOI: 10.1016/j.msea.2007.10.038

Google Scholar

[6] Y.V.R.K. Prasad, K.P. Rao, Hot deformation mechanisms and microstructural control in high temperature extruded AZ31 magnesium alloy, Adv. Eng. Mater. 9 (2007) 558-565.

DOI: 10.1002/adem.200700002

Google Scholar

[7] Z-Y. Jin, N-N. Li, K. Yan, J. Wang, J. Bai, H. Dong, Deformation mechanism and hot workability of extruded magnesium alloy AZ31, Acta Metall. Sin-Engl. 31 (2018) 71-81.

DOI: 10.1007/s40195-017-0681-5

Google Scholar

[8] X. Shang, J. Zhou, X. Wang, Y. Luo, Optimizing and identifying the process parameters of AZ31 magnesium alloy in hot compression on the base of processing maps, J. Alloys Compd. 629 (2015) 155-161.

DOI: 10.1016/j.jallcom.2014.12.251

Google Scholar

[9] A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn, Mater. Sci. Eng. A 423 (2006) 292-299.

DOI: 10.1016/j.msea.2006.02.041

Google Scholar

[10] T. Henseler, M. Ullmann, R. Kawalla, F. Berge, Influence of the sheet manufacturing process on the forming limit behaviour of twin-roll cast, rolled and heat-treated AZ31, Key Eng.Mater. 746 (2017) 154-160.

DOI: 10.4028/www.scientific.net/kem.746.154

Google Scholar

[11] M. Eftekhari, A. Fata, G. Faraji, M.M. Mashhadi, Hot tensile deformation behavior of Mg-Zn-Al magnesium alloy tubes processed by severe plastic deformation, J. Alloys Compd. 742 (2018) 442-453.

DOI: 10.1016/j.jallcom.2018.01.246

Google Scholar

[12] I. Shimizu, Temperature dependent plastic deformation behavior of AZ31 magnesium alloy in uniaxial and biaxial compressions, Key Eng.Mater. 725 (2017) 421-426.

DOI: 10.4028/www.scientific.net/kem.725.421

Google Scholar

[13] X. Wu, Y. Liu, Superplasticity of coarse-grained magnesium alloy, Scripta Mater. 46 (2002) 269-274.

DOI: 10.1016/s1359-6462(01)01234-9

Google Scholar

[14] Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot Working Guide-A Compendium of Processing Maps, Second ed., ASM International, Materials Park, OH, (2015).

Google Scholar

[15] Y.V.R.K. Prasad, T. Seshacharyulu, Modeling of hot deformation for microstructural control, Inter. Mater. Rev. 43 (1998) 243-258.

Google Scholar

[16] S.Venugopal, S.L. Mannan, Y.V.R.K. Prasad, Influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304 during hot working, Mater. Let. 26 (1996) 161-165.

DOI: 10.1016/0167-577x(95)00215-4

Google Scholar

[17] H. Ziegler, Some extremum principles in irreversible thermodynamics with applications to continuum mechanics. in: I.N. Sneddon, R. Hill (Eds.), Progress in Solid Mechanics, Vol.4, Wiley, New York, 1965, pp.91-193.

Google Scholar

[18] J.J. Jonas, C.M. Sellars, W.J.McG.Tegart, Strength and structure under hot working conditions. Metall. Rev. 14 (1969) 1-24.

DOI: 10.1179/mtlr.1969.14.1.1

Google Scholar

[19] H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps. Pergamon Press, Oxford, UK (1982).

Google Scholar

[20] J.R. Morris, J. Schraff, K.M. Ho, D.E. Turner, Y.Y.Ye, M.H. Yoo, Prediction of a {1122} hcp stacking fault using a modified generalized stacking-fault calculation. Phil. Mag. A 76 (1997) 1065-1077.

DOI: 10.1080/01418619708200015

Google Scholar