[1]
L. Jin, J. Dong, R. Wang, L.M. Peng, Effects of hot rolling processing on microstructure and mechanical properties of Mg-3%Al-1%Zn alloy sheet, Mater. Sci. Eng. A 527 (2010) 1970-1974.
DOI: 10.1016/j.msea.2009.11.047
Google Scholar
[2]
T. Murai, S-I .Matsuoka, S. Miyamoto, Y. Oki, Effect of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions, J. Mater. Proc. Tech 141 (2003) 207-212.
DOI: 10.1016/s0924-0136(02)01106-8
Google Scholar
[3]
G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Esadiqi, S. Yue, The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet, Mater. Sci. Eng. A 487 (2008) 243-250.
DOI: 10.1016/j.msea.2007.10.064
Google Scholar
[4]
Y.V.R.K. Prasad, K.P. Rao, Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy, Mater. Des. 30 (2009) 3723-3730.
DOI: 10.1016/j.matdes.2009.02.006
Google Scholar
[5]
Y.V.R.K. Prasad, K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesiuim alloy plate: Anisotropy of hot workability, Mater. Sci. Eng. A 487 (2008) 316-327.
DOI: 10.1016/j.msea.2007.10.038
Google Scholar
[6]
Y.V.R.K. Prasad, K.P. Rao, Hot deformation mechanisms and microstructural control in high temperature extruded AZ31 magnesium alloy, Adv. Eng. Mater. 9 (2007) 558-565.
DOI: 10.1002/adem.200700002
Google Scholar
[7]
Z-Y. Jin, N-N. Li, K. Yan, J. Wang, J. Bai, H. Dong, Deformation mechanism and hot workability of extruded magnesium alloy AZ31, Acta Metall. Sin-Engl. 31 (2018) 71-81.
DOI: 10.1007/s40195-017-0681-5
Google Scholar
[8]
X. Shang, J. Zhou, X. Wang, Y. Luo, Optimizing and identifying the process parameters of AZ31 magnesium alloy in hot compression on the base of processing maps, J. Alloys Compd. 629 (2015) 155-161.
DOI: 10.1016/j.jallcom.2014.12.251
Google Scholar
[9]
A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn, Mater. Sci. Eng. A 423 (2006) 292-299.
DOI: 10.1016/j.msea.2006.02.041
Google Scholar
[10]
T. Henseler, M. Ullmann, R. Kawalla, F. Berge, Influence of the sheet manufacturing process on the forming limit behaviour of twin-roll cast, rolled and heat-treated AZ31, Key Eng.Mater. 746 (2017) 154-160.
DOI: 10.4028/www.scientific.net/kem.746.154
Google Scholar
[11]
M. Eftekhari, A. Fata, G. Faraji, M.M. Mashhadi, Hot tensile deformation behavior of Mg-Zn-Al magnesium alloy tubes processed by severe plastic deformation, J. Alloys Compd. 742 (2018) 442-453.
DOI: 10.1016/j.jallcom.2018.01.246
Google Scholar
[12]
I. Shimizu, Temperature dependent plastic deformation behavior of AZ31 magnesium alloy in uniaxial and biaxial compressions, Key Eng.Mater. 725 (2017) 421-426.
DOI: 10.4028/www.scientific.net/kem.725.421
Google Scholar
[13]
X. Wu, Y. Liu, Superplasticity of coarse-grained magnesium alloy, Scripta Mater. 46 (2002) 269-274.
DOI: 10.1016/s1359-6462(01)01234-9
Google Scholar
[14]
Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot Working Guide-A Compendium of Processing Maps, Second ed., ASM International, Materials Park, OH, (2015).
Google Scholar
[15]
Y.V.R.K. Prasad, T. Seshacharyulu, Modeling of hot deformation for microstructural control, Inter. Mater. Rev. 43 (1998) 243-258.
Google Scholar
[16]
S.Venugopal, S.L. Mannan, Y.V.R.K. Prasad, Influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304 during hot working, Mater. Let. 26 (1996) 161-165.
DOI: 10.1016/0167-577x(95)00215-4
Google Scholar
[17]
H. Ziegler, Some extremum principles in irreversible thermodynamics with applications to continuum mechanics. in: I.N. Sneddon, R. Hill (Eds.), Progress in Solid Mechanics, Vol.4, Wiley, New York, 1965, pp.91-193.
Google Scholar
[18]
J.J. Jonas, C.M. Sellars, W.J.McG.Tegart, Strength and structure under hot working conditions. Metall. Rev. 14 (1969) 1-24.
DOI: 10.1179/mtlr.1969.14.1.1
Google Scholar
[19]
H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps. Pergamon Press, Oxford, UK (1982).
Google Scholar
[20]
J.R. Morris, J. Schraff, K.M. Ho, D.E. Turner, Y.Y.Ye, M.H. Yoo, Prediction of a {1122} hcp stacking fault using a modified generalized stacking-fault calculation. Phil. Mag. A 76 (1997) 1065-1077.
DOI: 10.1080/01418619708200015
Google Scholar