Extraction of Biological Apatite from Cow Bone at Different Calcination Temperatures: A Comparative Study

Article Preview

Abstract:

The purpose of this study is to extract natural hydroxyapatite (HAP) from cow bone. The hydrothermal method followed by calcination treatment at different temperatures is used in this current research. Cow bone has the potential for producing hydroxyapatite, a chief component present in bone and teeth of vertebrates. HAP is an excellent material used in bone restoration and tissue regeneration. Characterizations of the cow bone natural HAP powder were done by X-ray diffraction (XRD) and Thermogravimetric analysis (TGA). TGA data revealed that biological apatite is thermally stable at 1100°C. XRD data showed that the extracted HAP is, highly crystalline and hexagonal crystal structure having a crystallite size in the range of 10-83 nm. The extracted HAP material is found to be thermally stable up to 1300°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-52

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. M. Barakat, M. S. Khil, A. M. Omran, F. A. Sheikh, and H. Y. Kim, Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods,, J. Mater. Process. Technol., vol. 209, no. 7, p.3408–3415, (2009).

DOI: 10.1016/j.jmatprotec.2008.07.040

Google Scholar

[2] M. Younesi, S. Javadpour, and M. E. Bahrololoom, Effect of heat treatment temperature on chemical compositions of extracted hydroxyapatite from bovine bone ash,, J. Mater. Eng. Perform., vol. 20, no. 8, p.1484–1490, (2011).

DOI: 10.1007/s11665-010-9785-z

Google Scholar

[3] M. M. Stevens, Biomaterials for bone tissue engineering,, Mater. Today, vol. 11, no. 5, p.18–25, (2008).

Google Scholar

[4] C. P. Yoganand, V. Selvarajan, J. Wu, and D. Xue, Processing of bovine hydroxyapatite (HA) powders and synthesis of calcium phosphate silicate glass ceramics using DC thermal plasma torch,, Vacuum, vol. 83, no. 2, p.319–325, (2008).

DOI: 10.1016/j.vacuum.2008.06.003

Google Scholar

[5] R. Murugan and S. Ramakrishna, Production of ultra-fine bioresorbable carbonated hydroxyapatite,, Acta Biomater., vol. 2, no. 2, p.201–206, (2006).

DOI: 10.1016/j.actbio.2005.09.005

Google Scholar

[6] H. Eslami, M. Solati-Hashjin, and M. Tahriri, The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite,, Mater. Sci. Eng. C, vol. 29, no. 4, p.1387–1398, (2009).

DOI: 10.1016/j.msec.2008.10.033

Google Scholar

[7] A. Rogina, M. Ivankovic, and H. Ivankovic, Preparation and characterization of nano-hydroxyapatite within chitosan matrix,, Mater. Sci. Eng. C, vol. 33, no. 8, p.4539–4544, (2013).

DOI: 10.1016/j.msec.2013.07.008

Google Scholar

[8] G. Chen, T. Ushida, and T. Tateishi, Development of biodegradable porous scaffolds for tissue engineering,, Mater. Sci. Eng. C, vol. 17, no. 1–2, p.63–69, (2001).

DOI: 10.1016/s0928-4931(01)00338-1

Google Scholar

[9] Y. Z. Wan et al., Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications,, Mater. Sci. Eng. C, vol. 27, no. 4, p.855–864, (2007).

Google Scholar

[10] E. Bouyer, F. Gitzhofer, and M. I. Boulos, Morphological study of hydroxyapatite nanocrystal suspension,, J. Mater. Sci. Mater. Med., vol. 11, no. 8, p.523–531, (2000).

Google Scholar

[11] X. Li, L. Wang, Y. Fan, Q. Feng, F. Z. Cui, and F. Watari, Nanostructured scaffolds for bone tissue engineering,, J. Biomed. Mater. Res. - Part A, vol. 101 A, no. 8, p.2424–2435, (2013).

DOI: 10.1002/jbm.a.34539

Google Scholar

[12] S. Adzila, S. Ramesh, I. Sopyan, C. Y. Tan, M. Hamdi, and W. D. Teng, Mechanochemical Synthesis of Magnesium Doped Hydroxyapatite: Powder Characterization,, Appl. Mech. Mater., vol. 372, no. January, p.62–65, (2013).

DOI: 10.4028/www.scientific.net/amm.372.62

Google Scholar

[13] S. V. Dorozhkin, Calcium Orthophosphates as Bioceramics: State of the Art,, J. Funct. Biomater., vol. 1, no. 1, p.22–107, (2010).

Google Scholar

[14] E. Champion, Sintering of calcium phosphate bioceramics,, Acta Biomater., vol. 9, no. 4, p.5855–5875, (2013).

DOI: 10.1016/j.actbio.2012.11.029

Google Scholar

[15] N. Bano, S. S. B. Jikan, H. B. Basri, S. A. B. S. A. Bakar, and A. H. Nuhu, Natural Hydroxyapatite Extracted From Bovine Bone,, J. Sci. Technol., vol. 9, no. 2, p.22–28, (2017).

Google Scholar

[16] M. Figueiredo, J. Henriques, G. Martins, F. Guerra, F. Judas, and H. Figueiredo, Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes - Comparison with human bone,, J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 92, no. 2, p.409–419, (2010).

DOI: 10.1002/jbm.b.31529

Google Scholar

[17] R. Rajesh, A. Hariharasubramanian, and Y. D. Ravichandran, Chicken Bone as a Bioresource for the Bioceramic (Hydroxyapatite),, Phosphorus. Sulfur. Silicon Relat. Elem., vol. 187, no. 8, p.914–925, (2012).

DOI: 10.1080/10426507.2011.650806

Google Scholar

[18] A. Sobczak, Z. Kowalski, and Z. Wzorek, Preparation of hydroxyapatite from animal bones,, Acta Bioeng. Biomech., vol. 11, no. 4, p.23–28, (2009).

Google Scholar

[19] K. Haberko et al., Natural hydroxyapatite - Its behaviour during heat treatment,, J. Eur. Ceram. Soc., vol. 26, no. 4–5, p.537–542, (2006).

Google Scholar

[20] N. Mustafa, M. H. I. Ibrahim, R. Asmawi, and A. M. Amin, Hydroxyapatite extracted fromWaste Fish Bones and Scales via Calcination Method,, Appl. Mech. Mater., vol. 774, p.2–6, (2015).

DOI: 10.4028/www.scientific.net/amm.773-774.287

Google Scholar

[21] J. Venkatesan et al., Isolation and characterization of nano-hydroxyapatite from salmon fish bone,, Materials (Basel)., vol. 8, no. 8, p.5426–5439, (2015).

DOI: 10.3390/ma8085253

Google Scholar

[22] A. Ruksudjarit, K. Pengpat, G. Rujijanagul, and T. Tunkasiri, Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone,, Curr. Appl. Phys., vol. 8, no. 3–4, p.270–272, (2008).

DOI: 10.1016/j.cap.2007.10.076

Google Scholar

[23] C. Y. Ooi, M. Hamdi, and S. Ramesh, Properties of hydroxyapatite produced by annealing of bovine bone,, Ceram. Int., vol. 33, no. 7, p.1171–1177, (2007).

DOI: 10.1016/j.ceramint.2006.04.001

Google Scholar

[24] N. A. M. Barakat et al., Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: Extraction of biologically desirable HAp,, Mater. Sci. Eng. C, vol. 28, no. 8, p.1381–1387, (2008).

DOI: 10.1016/j.msec.2008.03.003

Google Scholar

[25] M. Akram, R. Ahmed, I. Shakir, W. A. W. Ibrahim, and R. Hussain, Extracting hydroxyapatite and its precursors from natural resources,, J. Mater. Sci., vol. 49, no. 4, p.1461–1475, (2014).

DOI: 10.1007/s10853-013-7864-x

Google Scholar

[26] S. M. Londoño-Restrepo, C. F. Ramirez-Gutierrez, A. Del Real, E. Rubio-Rosas, and M. E. Rodriguez-García, Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air,, J. Mater. Sci., p.1–11, (2016).

DOI: 10.1007/s10853-016-9755-4

Google Scholar

[27] A. Doostmohammadi, A. Monshi, M. H. Fathi, and O. Braissant, A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite,, Ceram. Int., vol. 37, no. 5, p.1601–1607, (2011).

DOI: 10.1016/j.ceramint.2011.03.009

Google Scholar

[28] F.-H. Lin, C.-J. Liao, K.-S. Chen, and J.-S. Sun, Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7. 10H2O addition,, Biomaterials, vol. 20, no. 5, p.475–484, (1999).

DOI: 10.1016/s0142-9612(98)00193-8

Google Scholar

[29] E. Hosseinzadeh, M. Davarpanah, N. H. Nemati, and S. A. Tavakoli, Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method,, Int. J. Organ Transplant. Med., vol. 5, no. 1, p.23–31, (2014).

Google Scholar

[30] B. Cengiz, Y. Gokce, N. Yildiz, Z. Aktas, and A. Calimli, Synthesis and characterization of hydroxyapatite nanoparticles,, Colloids Surfaces A Physicochem. Eng. Asp., vol. 322, no. 1–3, p.29–33, (2008).

DOI: 10.1016/j.colsurfa.2008.02.011

Google Scholar

[31] E. Landi, E. Landi, A. Tampieri, G. Celotti, and S. Sprio, Densification Behavior and Mechanisms of Synthetic Hydroxyapatite,, J. Eur. Ceram. Soc., vol. 20, no. 14–15, p.2377–2387, (2000).

DOI: 10.1016/s0955-2219(00)00154-0

Google Scholar

[32] M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, and H. Figueiredo, Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone,, Ceram. Int., vol. 36, no. 8, p.2383–2393, (2010).

DOI: 10.1016/j.ceramint.2010.07.016

Google Scholar