[1]
B. C¸ic¸ek, Y. Sun, Mater. Des. 2012, 37, 369.
Google Scholar
[2]
Desaki T, Goto Y, Kamiya S. (2000). Development of the Aluminium Alloy Bearing with Higher Wear Resistance, Soc. Autom. Engr. of Japan Rev. 21, 321-325.
DOI: 10.1016/s0389-4304(00)00051-5
Google Scholar
[3]
Lepper K, James M, Chashechkina K, Rigneya, D.A. (1997). Sliding behaviour of selected aluminium alloys. Wear, 203-204, 46-56.
DOI: 10.1016/s0043-1648(96)07475-3
Google Scholar
[4]
Dwivedi S P 2014. Microstructure and mechanical properties of A356/SiC composites fabricated by electromagnetic stir casting Procedia Materials Science 6 1524-532.
DOI: 10.1016/j.mspro.2014.07.133
Google Scholar
[5]
Mazahery A and Shabani M O 2012. Characterization of cast A356 alloy reinforced with nano sic composites Transaction of Nonferrous Metals Society of China 22 275-280.
DOI: 10.1016/s1003-6326(11)61171-0
Google Scholar
[6]
Davis, F.A. and Eyre, T.S., 1994. The effect of silicon content and morphology on the wear of aluminium-silicon alloys under dry and lubricated sliding conditions. Tribology international, 27(3), pp.171-181.
DOI: 10.1016/0301-679x(94)90042-6
Google Scholar
[7]
Abis, S., Mengucci, P. and Riontino, G., 1994. Influence of Si additions on the ageing process of an Al-Cu-Mg-Ag alloy. Philosophical Magazine A, 70(5), pp.851-868.
DOI: 10.1080/01418619408242935
Google Scholar
[8]
Dong P Y 2013. Microstructure and properties of A356-10%SiC particle composite castings at different solidification pressures Transactios of Nonferrous Metals Society of China 23 2222-28.
DOI: 10.1016/s1003-6326(13)62721-1
Google Scholar
[9]
Amirkhanlou S and Niroumand B 2011. Effects on reinforcement distribution on low and high temperature of low and high tensile properties of Al A356/SiCp cast composites produced by a novel reinforcement dispersion technique. Materials Science and Engineering A 528(24):7186-7195.
DOI: 10.1016/j.msea.2011.06.013
Google Scholar
[10]
Akinlabi S.A; M.P. Mashinini; Fatoba O.S; Akinlabi E.T. (2018). Effect of Grain Size Deformation on Laser Processed Sheet Steel Under High Temperature. International Journal of Mechanical and Production Engineering, 6(2), pp.23-28.
Google Scholar
[11]
Aigbodion V and Hassan S B 2007 Effect of silicon carbide reinforcement on microstructure and properties of cast Al-Si-Fe/SiC particulate composites Materials Science and Engineering A 447 3555-360.
DOI: 10.1016/j.msea.2006.11.030
Google Scholar
[12]
Y.Y. Zhu, D. Liu, X.J. Tian, J. Li, H.M. Wang. Microstructure evolution and layer bands of laser melting deposition Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy J. Alloys Compd., 616 (2014), pp.468-474.
DOI: 10.1016/j.jallcom.2014.07.161
Google Scholar
[13]
Martínez-Hernández, Alma & Federico, Manriquez & Torres, Julieta & Ortega, Raúl & Perez Bueno, Jose & Meas, Yunny & Trejo, Gabriel & Méndez-Albores, Alia. (2016). Electrodeposition of Ni-P/SiC Composite Films with High Hardness. 10.5772/61858.
DOI: 10.5772/61858
Google Scholar
[14]
Shuai C. Feng, P. Zhang L. Gao C. Hu H. Peng S. and Min A. (2013). Correlation between Properties and Microstructure of Laser Sintered Porous β-TriCalcium Phosphate Bone Scaffolds, Sci. Technol. Adv. Mater. 14, 1-10.
DOI: 10.1088/1468-6996/14/5/055002
Google Scholar
[15]
Popoola, A.P.I., Fatoba, O.S., Aigbodion, V.S. And Popoola, O.M. 2017. Tribological Evaluation of Mild Steel with Ternary Alloy of Zn-Al-Sn by Laser Deposition, International Journal of Advanced Manufacturing Technology, 89(5-8), 1443-1449. DOI 10.1007/s00170-016-9170-7.
DOI: 10.1007/s00170-016-9170-7
Google Scholar
[16]
Fatoba O.S., Popoola A.P.I. and Aigbodion V.S. 2016. Experimental study of Hardness values and Corrosion Behaviour of Laser Alloyed Zn-Sn-Ti Coatings of UNS G10150 Mild Steel, Journal of Alloys and Compounds, 658, 248-254.
DOI: 10.1016/j.jallcom.2015.10.169
Google Scholar
[17]
Gong X. Lydon J. Cooper K. Chou K. (2014b). Beam Speed Effects on Ti-6Al-4V Microstructures in Electron Beam Additive Manufacturing, J. Mater. Res. 29, 1951-1959.
DOI: 10.1557/jmr.2014.125
Google Scholar
[18]
O.S. Fatoba; A.P.I Popoola; V.S. Aigbodion (2018). Electrochemical Studies and Surface Analysis of Laser Deposited Zn-Al-Sn Coatings on AISI 1015 Steel. International Journal of Surface Science and Engineering. 12 (1), 40-59.
DOI: 10.1504/ijsurfse.2018.090054
Google Scholar
[19]
Fatoba O.S., Popoola A.P.I. and Aigbodion V.S. (2018). Laser Alloying of Al-Sn Binary Alloy onto Mild Steel: InSitu Formation. Hardness and Anti-Corrosion Properties. Lasers in Engineering, 39(3-6), 292-312.
Google Scholar
[20]
Fatoba O.S., Akinlabi E.T. and Akinlabi S.A. (2018). Numerical Investigation of Laser Deposited Al-Based Coatings on Ti-6Al-4V Alloy. Proceedings at the 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT 2018), Cape town, South Africa, 85-90.
DOI: 10.1109/icmimt.2018.8340426
Google Scholar
[21]
Gharehbaghi R., Fatoba O.S. and Akinlabi E.T. (2018). Influence of Scanning Speed on the Microstructure of Deposited Al-Cu-Fe Coatings on a Titanium Alloy Substrate by Laser Metal Deposition Process. Proceedings at the 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT 2018), Cape town, South Africa, pp.44-49.
DOI: 10.1109/icmimt.2018.8340418
Google Scholar
[22]
Fatoba, O.S; Popoola, A.P.I; Fedotova, T; Pityana, S.L. (2015) Electrochemical Studies on the Corrosion Behaviour of Laser Alloyed Zn-Sn Coatings on UNS G10150 Steel in 1M HCl Solution. Silicon. 7(4), 357-369.
DOI: 10.1007/s12633-015-9319-2
Google Scholar
[23]
Fatoba, O.S., Akinlabi, E.T. Akinlabi, S.A. (2018). Effects of Fe addition and Process Parameters on the Wear and Corrosion Properties of Laser Deposited Al-Cu-Fe Coatings Ti-6Al-4V Alloy. Proceedings at the 2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT 2018), Cape town, South Africa, 74-79.
DOI: 10.1109/icmimt.2018.8340426
Google Scholar
[24]
Fatoba O.S., Adesina O.S. Popoola A.P.I. (2018). Evaluation of microstructure, microhardness, and electrochemical properties of laser-deposited Ti-Co coatings on Ti-6Al-4V Alloy. The International Journal of Advanced Manufacturing Technology. http://dx.doi.org/10.1007/s00170-018-2106-7.
DOI: 10.1007/s00170-018-2106-7
Google Scholar
[25]
Fatoba O.S., Akinlabi S.A., Gharehbaghi R., Akinlabi E.T (2018). Microstructural Analysis, Microhardness and Wear Resistance Properties of Quasicrystalline Al-Cu-Fe Coatings on Ti-6Al-4V Alloy. Materials Express Research. 5(6), 1-14.
DOI: 10.1088/2053-1591/aaca70
Google Scholar
[26]
O.S. Fatoba; E.T. Akinlabi; M.E. Makhatha (2017). Effect of process parameters on the microstructure, hardness and wear resistance properties of Zn-Sn-Ti coatings on AISI 1015 steel: laser alloying technique. International Journal of Surface Science and Engineering. 11 (6), 489-511.
DOI: 10.1504/ijsurfse.2017.10009073
Google Scholar
[27]
J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, The determination of yield strength from hardness measurements,, Metallurgical Transactions, vol. 2, no. 7, p.1979–1983, (1971).
DOI: 10.1007/bf02913433
Google Scholar
[28]
J.R. Cahoon, W.H. Broughton, A.R. Kutzak, the determination of yield strength from hardness measurements, Met.Trans. 2(1971)1979–(1983).
DOI: 10.1007/bf02913433
Google Scholar
[29]
K.S. Chenna, G.N. Kumar, K. JhaAbhay, P. Bhanu, On the prediction of strength from hardness for copper alloys, J.Mater.(2013).
Google Scholar
[30]
E. J. Pavlina and C. J. Van Tyne, Correlation of Yield strength and Tensile strength with hardness for steels,, Journal of Materials Engineering and Performance, vol. 17, no. 6, p.888–893, (2008).
DOI: 10.1007/s11665-008-9225-5
Google Scholar