Enhancement of Miscibility and Thermal Properties of Linear Low Density Polyethylene (LLDPE)/Polysulfone (PSU) Polymer Blends by Functionalization of LLDPE

Article Preview

Abstract:

Blended polymer composites are prepared based on linear low density polyethylene (LLDPE) and mixed with polysulfone (PSU) using solvent casting technique. LLDPE is functionalized with carbonyl functional groups to enable it to interact with PSU from the molecular level. Various weight percent of PSU is added into LLDPE to find the optimum weight percent ratio between LLDPE and PSU. The highest glass transition temperature obtained is 47.58°C for ratio LLDPE to PSU of 7:3. In addition, value for decomposition temperature is increased up to 490.16°C with the increasing of PSU content. SEM observation of the blended polymer films shows that glass transition and decomposition temperature depend on morphology of the blended polymers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-29

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Buthaina A. Ibrahim, & Karrer M. Kadum. (2010). Influence of polymer blending on mechanical and thermal properties. Modern Applied Science, 4 (9), 157-161.

Google Scholar

[2] A. Dorigato, A. Pegoretti, L. Fambri, C. Lonardi, M. Slouf, & J. Kolarik. (2010). Linear low density polyethylene/cycloolefin copolymer blends. eXpress Polymer Letter, 5(1), 23-37.

DOI: 10.3144/expresspolymlett.2011.4

Google Scholar

[3] I. Krupa, & A.S. Luyt. (2001). Physical properties of blends of LLDPE and an oxidized paraffin wax. Polymer, 42, 7285-7289.

DOI: 10.1016/s0032-3861(01)00172-0

Google Scholar

[4] A. S. Luyt, J. A. Molefi, & H. Krump. (2006). Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polymer Degradation and Stability, 91, 1629-1636.

DOI: 10.1016/j.polymdegradstab.2005.09.014

Google Scholar

[5] Hossein Ali Khonakdar. (2015). Dynamic mechanical analysis and thermal properties of LLDPE/EVA/modified silica nanocomposites. Composites Part B, 76, 343-353.

DOI: 10.1016/j.compositesb.2015.02.031

Google Scholar

[6] Ruowen Zong, Zhengzhou Wang, Naian Liu, Yuan Hu, & Guanxuan Liao. (2005). Thermal degradation kinetics of polyethylene and silane crosslinked polyethylene. Journal of Applied Polymer Science, 98, 1172-1179.

DOI: 10.1002/app.22124

Google Scholar

[7] Vinny R. Sastri. (2014). 8-high-temperature engineering thermoplastics: Polysulfones, polyimides, polysulfides, polyketones, liquid crystalline polymers, and fluoropolymers. Plastics in Medical Devices Properties, Requirements and Applications, (2nd ed., pp.173-213), New York, NY: Elsevier.

DOI: 10.1016/b978-0-323-85126-8.00001-1

Google Scholar

[8] Gcina Doctor Vilakati, Eric M. V. Hoek, & Bhekie Brilliance Mamba. (2014). Probing the mechanical and thermal properties of polysulfone membranes modified with synthetic and natural polymer addictives. Polymer Testing, 34, 202-210.

DOI: 10.1016/j.polymertesting.2014.01.014

Google Scholar

[9] Mariana Ionita, Andreea Madalina Pandele, Livia Crica, & Luisa Pilan. (2014). Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites Part B : Engineering, 59, 133-139.

DOI: 10.1016/j.compositesb.2013.11.018

Google Scholar