[1]
R. Biais, M. Bitran, F. Dabosi, P. Millet, and J. Pegoud, Structural and Mechanical Properties of Sintered Mg Products At Elevated Temperatures, Powder Metall. 10, (1967) 116-144.
DOI: 10.1179/pom.1967.10.20.004
Google Scholar
[2]
J. W. S. Jones and J. Williams, The Preparation of Beryllium Mg Alloys By Powder Metallurgical Methods, Powder Metall. 4, (1961) 37–41.
DOI: 10.1179/pom.1961.4.8.003
Google Scholar
[3]
I. G. Crossland and R. B. Jones, Dislocation Creep in Mg, Met. Sci. J. 6 , (1972) 162–166.
Google Scholar
[4]
D. Annur, F. P. Lestari, A. Erryani, and I. Kartika, Study of sintering on Mg-Zn-Ca alloy system, AIP Conf. Proc. 1964, (2018) 020029-1-020029-6.
DOI: 10.1063/1.5038311
Google Scholar
[5]
P. Salvetr, P. Novák, and D. Vojtech, Porous Mg alloys prepared by powder metallurgy, Mater. Tehnol. 50, (2016) 917–922.
DOI: 10.17222/mit.2015.226
Google Scholar
[6]
J. Čapek and D. Vojtěch, Porous Mg for medical applications - Influence of powder size on mechanical properties, Key Eng. Mater., vol. 592–593, (2014) 342–345.
DOI: 10.4028/www.scientific.net/kem.592-593.342
Google Scholar
[7]
J. Kubásek, D. Dvorský, M. Čavojský, D. Vojtěch, N. Beronská, and M. Fousová, Superior Properties of Mg–4Y–3RE–Zr Alloy Prepared by Powder Metallurgy, J. Mater. Sci. Technol. 33, (2017) 652–660.
DOI: 10.1016/j.jmst.2016.09.019
Google Scholar
[8]
P. Burke, G. J. Kipouros, D. Fancelli, and V. Laverdiere, Sintering fundamentals of Mg powders, Can. Metall. Q 48, (2009) 123–132.
DOI: 10.1179/cmq.2009.48.2.123
Google Scholar
[9]
G. Garcés, F. Domínguez, P. Pérez, G. Caruana, and P. Adeva, Effect of extrusion temperature on the microstructure and plastic deformation of PM-AZ92, J. Alloys Compd. 422, (2006) 293–298.
DOI: 10.1016/j.jallcom.2005.11.069
Google Scholar
[10]
W. Xie, Y. Liu, D. S. Li, J. Zhang, Z. W. Zhang, and J. Bi, Influence of sintering routes to the mechanical properties of Mg alloy and its composites produced by PM technique, J. Alloys Compd. 431, (2007) 162–166.
DOI: 10.1016/j.jallcom.2006.05.076
Google Scholar
[11]
S. D. Sheng, D. Chen, and Z. H. Chen, Effects of Si addition on microstructure and mechanical properties of RS/PM (rapid solidification and powder metallurgy) AZ91 alloy, J. Alloys Compd. 470, (2009) 17–20.
DOI: 10.1016/j.jallcom.2008.03.005
Google Scholar
[12]
E. Aghion and Y. Perez, Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology, Mater. Charact. 96, (2014) 78–83.
DOI: 10.1016/j.matchar.2014.07.012
Google Scholar
[13]
M. Rashad, F. Pan, and M. Asif, Room temperature mechanical properties of Mg-Cu-Al alloys synthesized using powder metallurgy method, Mater. Sci. Eng. A. 644, (2015) 129–136.
DOI: 10.1016/j.msea.2015.07.061
Google Scholar
[14]
T. Iwaoka, M. Aonuma, and M. Nakamura, Effect of the Mean Size of Fine Intermetallic Compounds on the Strength Property of Sintered Mg Alloy by Gas Atomization, J. Japan Soc. Powder Powder Metall. 63, (2016) 657–662.
DOI: 10.2497/jjspm.63.657
Google Scholar
[15]
T. J. D. et al. T. Judson Durai et al., M. Sivapragash, and M. Edwin Sahayaraj, Effect of Sintering Temperature on Mechanical Properties of Mg-Zr Alloy, Int. J. Mech. Prod. Eng. Res. Dev. 7, (2017) 117–122.
DOI: 10.24247/ijmperdoct201713
Google Scholar
[16]
L. Hou et al., Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy, J. Mater. Sci. Technol. 33, (2017) 947–953.
DOI: 10.1016/j.jmst.2017.02.002
Google Scholar
[17]
D. Annur, F. P. Lestari, A. Erryani, F. A. Sijabat, I. N. G. P. Astawa, and I. Kartika, Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique, AIP Conf. Proc. 1945, 020015-1-020015-5 (2018).
DOI: 10.1063/1.5030237
Google Scholar
[18]
S. Lesz, J. Kraczla, and R. Nowosielski, Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications, Arch. Civ. Mech. Eng. 18, (2018) 1288–1299.
DOI: 10.1016/j.acme.2018.04.002
Google Scholar
[19]
S. Singh and N. Bhatnagar, A novel approach to fabricate 3D open cellular structure of Mg10Zn alloy with controlled morphology, Mater. Lett. 212, (2018) 62–64.
DOI: 10.1016/j.matlet.2017.10.071
Google Scholar
[20]
P. Cao, L. Li, and M. O. Lai, Fabrication and-characteristics of Mg alloys produced via powder metallurgy, Trans. Nonferrous Met. Soc. China. 10, (2000) 757–760.
Google Scholar
[21]
R. Anish, M. S. Pragash, and G. R. Singh, Development and Characterization of AZ31B Mg Alloy Using Powder Metallurgy Technique Followed by Hot Extrusion, Adv. Mater. Res., vol. 984–985, (2014) 124–128.
DOI: 10.4028/www.scientific.net/amr.984-985.124
Google Scholar
[22]
Z. Zhang, R. Yang, G. Chen, Y. Zhao, and Y. Shao, Correlation between microstructure and tensile behavior in powder metallurgy ZK60 alloys, Mater. Lett. 89, (2012) 166–168.
DOI: 10.1016/j.matlet.2012.07.029
Google Scholar
[23]
S. González, P. Pérez, G. Garcés, and P. Adeva, Influence of the processing route on the mechanical properties at high temperatures of Mg-Ni-Y-RE alloys containing LPSO-phases, Mater. Sci. Eng. A 673, (2016) 266–279.
DOI: 10.1016/j.msea.2016.07.077
Google Scholar
[24]
D. Yang et al., Fabrication of Mg-Al alloy foam with close-cell structure by powder metallurgy approach and its mechanical properties, J. Manuf. Process. 22, (2016) 290–296.
DOI: 10.1016/j.jmapro.2016.04.003
Google Scholar
[25]
S. Singh and N. Bhatnagar, A novel approach to fabricate 3D open cellular structure of Mg10Zn alloy with controlled morphology, Mater. Lett. 212, (2018) 62–64.
DOI: 10.1016/j.matlet.2017.10.071
Google Scholar
[26]
N. Zou and Q. Li, Mechanical Properties of Lightweight Porous Mg Processed Through Powder Metallurgy, JOM. 70, (2018) 650–655.
DOI: 10.1007/s11837-018-2772-9
Google Scholar
[27]
M. R. Harun, N. Muhamad, A. B. Sulong, N. H. Mohamad Nor, and K. R. Jamaludin, The Development of Metal Injection Moulding for ZK60 Mg Alloy Using Palm Stearin Based Binder System, Adv. Mater. Res., vol. 230–232, (2011) 1199–1203.
DOI: 10.4028/www.scientific.net/amr.230-232.1199
Google Scholar
[28]
M. R. Harun, N. Muhamad, A. B. Sulong, N. H. M. Nor, and M. H. I. Ibrahim, Rheological Investigation of ZK60 Mg Alloy Feedstock for Metal Injection Moulding Using Palm Stearin Based Binder System, Appl. Mech. Mater., vol. 44–47, (2010) 4126–4130.
DOI: 10.4028/www.scientific.net/amm.44-47.4126
Google Scholar
[29]
M. R. Harun, N. Muhamad, A. B. Sulong, N. H. Mohamad Nor, and K. R. Jamaludin, Metal Injection Moulding of ZK60 Mg Alloy Powder Using Palm Stearin Based Binder System, Adv. Mater. Res., vol. 445, (2012) 374–379.
DOI: 10.4028/www.scientific.net/amr.445.374
Google Scholar
[30]
M. R. Harun, N. Muhamad, A. B. Sulong, N. H. Mohamad Nor, K. R. Jamaludin, and M. H. Ibrahim, Solvent debinding process for ZK60 Mg alloy mim compact, J. Teknol. (Sciences Eng. 59, (2012) 159–168.
DOI: 10.11113/jt.v59.2584
Google Scholar
[31]
M. Wolff et al., Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications, JOM. 68, (2016) 1191–1197.
DOI: 10.1007/s11837-016-1837-x
Google Scholar
[32]
D. Dvorsky, J. Kubasek, D. Vojtěch, F. Prusa, and K. Nova, Preparation of WE43 using powder metallurgy route, Manuf. Technol.16, (2016) 680–687.
DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/4/680
Google Scholar
[33]
A. Elsayed, J. Umeda, and K. Kondoh, The texture and anisotropy of hot extruded Mg alloys fabricated via rapid solidification powder metallurgy, Mater. Des. 32, (2011) 4590–4597.
DOI: 10.1016/j.matdes.2011.03.066
Google Scholar