Morphology Prediction and Dissolution Behavior of α-Succinic Acid in Ethanol Solution Using Molecular Dynamic Simulation

Article Preview

Abstract:

Succinic acid is a potential co-former to produce co-crystal, thus an understanding of the dissolution behaviour of succinic acid crystal is crucial for designing the co-crystal. In this works, α-succinic acid was chosen as a model compound for this study regardless its attractive crystal chemistry and its diverse surface properties. The aims of this study are to analyse the morphology of succinic acid crystal (form A) and to analyse the dissolution behaviour of succinic acid crystal (form A) in the ethanol solution using molecular dynamic simulation. Prediction of form A succinic acid morphology were conducted with different combination of charge set and potential function i.e ESP and CVFF which produces hexagonal needle-like shape morphology and shows good agreement with the experimental crystal shape. Dissolution of α-succinic acid in ethanol solvent was investigated using dynamic simulation. Visual observation and mobility assessment shows that the molecules at the edge of the crystal tends to dissolve faster compared to the molecules at other position on the facet.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-148

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Veesler, F. Puel, Crystallization of Pharmaceutical Crystal. Handbook of Crystal Growth second ed., France, 2015, pp.915-949.

DOI: 10.1016/b978-0-444-56369-9.00021-6

Google Scholar

[2] M. Viertelhaus, A. Hafner, Co-cyrstal and their advantages forAPIs with challenging properties, Chim. Oggi-Chem. Today 33 (2015) 23-26.

Google Scholar

[3] I. Volkov, M. Cieplak, J. Koplik, J. R. Banavar, Molecular dynamics simulations of crystallization of hard spheres, Phys. Rev. E 66 (2012) 061401.

DOI: 10.1103/physreve.66.061401

Google Scholar

[4] R. Docherty, K.J. Roberts, Modelling the Morphology of Molecular Crystals; Application to Anthracene, Biphenyl and b-Succinic Acid, J. Cryst. Growth 88 (1988) 159-168.

DOI: 10.1016/0022-0248(88)90272-2

Google Scholar

[5] D. Toroz, R.B. Hammond, K.J. Roberts, S. Harris, T. Ridley, Molecular dynamics simulations of organic crystal dissolution: The lifetime and stability of the polymorphic forms of para-amino benzoic acid in aqueous environment, J. Cryst. Growth 401 (2014) 1-6.

DOI: 10.1016/j.jcrysgro.2014.01.064

Google Scholar

[6] H.P. Perdok, On the Relations Between Structure and Morphology of Crystals, I. Acta Cryst. 8 (1955) 49.

Google Scholar

[7] Y. Qiushuo, L. Dang, S. Black, H. Y. Wei, Crystallization of the polymorphs of succinic acid via sublimation at different temperature in the presence or absence of water and isopropanol vapor, J. Cryst. Growth 340 (2012) 209-215.

DOI: 10.1016/j.jcrysgro.2011.12.050

Google Scholar

[8] V. Chikhalia, R. T. Forbes, R. A. Storey, M. Ticehurst, The effect of crystal morphology and mill type on milling induced crystal disorder, Eur. J. Pharm. Sci. 27 (2006) 19-26.

DOI: 10.1016/j.ejps.2005.08.013

Google Scholar

[9] W. Shi, Y. Chu, M. Xia, W. Lei, F. Wang, Crystal Morphology Prediction of 1,3,3-trinitroazetidine in Ethanol Solvent by Molecular Dynamics Simulation, J. Mol. Graph. Model. 64 (2016) 94-100.

DOI: 10.1016/j.jmgm.2016.01.004

Google Scholar

[10] Y. Gao, K.W. Olsen, Molecular Dynamic of Drug Crystal Dissolution: Simulation of Acetaminophen Form I in Water, Mol. Pharm. 10 (2013) 905-917.

DOI: 10.1021/mp4000212

Google Scholar

[11] V. Bisker-Lieb, M.F. Doherty, Modelling Crystal Shape of Polar Organic Materials: Applications to Amino Acids, Cryst. Growth Des. 3(2) (2003), 221-237.

DOI: 10.1021/cg025538q

Google Scholar

[12] D.S. Coombes, C. Richard, A. Catlow, J.D. Gale, A.L. Rohl, S.L. Price, Calculation of Attachment Energies and Relative Volume Growth Rates as an Aid to Polymorph Prediction, Cryst. Growth Des. 5 (2005) 879-885.

DOI: 10.1021/cg049707d

Google Scholar

[13] P. Hartman, P.J. Bennema, The Attachment Energy as a Habit Controlling Factor, J. Cryst. Growth 49 (1980) 145-156.

DOI: 10.1016/0022-0248(80)90075-5

Google Scholar

[14] N. Anuar, W.R.W. Daud, K. J. Roberts, S. K. Kamarudin, S. M. Tasirin, Morphology and Associated Surface Chemistry of L-Isoleucine Crystal Modeled under the Influence of L-Leucine Additive Molecules, Cryst. Growth Des. 12 (2009) 2159-2203.

DOI: 10.1021/cg200266e

Google Scholar

[15] M.F. Othman, N. Anuar, N.F.A. Bakar, Morphology of L-Alanine Crystal, Associated with its Interaction with Glycine Additive: A Molecular Modelling and Experimental Study, Adv. Mat. Res., 1113 (2015) 498-503.

DOI: 10.4028/www.scientific.net/amr.1113.498

Google Scholar

[16] W. Shi, M. W. Lei, F. Wang, Solvent effect on the crystal morphology of 2,6- diamino-3,5-dinitropyridine-1-oxide: A molecular dynamics simulation study, J. Mol. Graph. Model. 50 (2014) 71-77.

DOI: 10.1016/j.jmgm.2014.03.005

Google Scholar

[17] J.P. Zeng, Y.-S. Bai, S. Chen, C.-A. Ma, Molecular dynamics simulation of diffusion of nitrobenzene in 3-methylimidazolium hexa fluoro phosphate ionic liquids, J. Mol. Liq. 183 (2013) 1-7.

DOI: 10.1016/j.molliq.2013.03.021

Google Scholar