[1]
Mook, W. T., M. H. Chakrabarti, M. K. Aroua, G. M. A. Khan, B. S. Ali, M. S. Islam, and MA Abu Hassan. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination 285 (2012) 1-13.
DOI: 10.1016/j.desal.2011.09.029
Google Scholar
[2]
Dong, Sainan, and Majid Sartaj. Statistical analysis and optimization of ammonia removal from landfill leachate by sequential microwave/aeration process using factorial design and response surface methodology. Journal of Environmental Chemical Engineering 4, no. 1 (2016) 100-108.
DOI: 10.1016/j.jece.2015.10.029
Google Scholar
[3]
Luo, Xianping, Qun Yan, Chunying Wang, Caigui Luo, Nana Zhou, and Chensheng Jian. Treatment of ammonia nitrogen wastewater in low concentration by two-stage ozonization. International journal of environmental research and public health 12, no. 9 (2015) 11975-11987.
DOI: 10.3390/ijerph120911975
Google Scholar
[4]
Halim, Azhar Abdul, Mohd Talib Latif, and Anuar Ithnin. Ammonia removal from aqueous solution using organic acid modified activated carbon. World Applied Sciences Journal 24, no. 1 (2013) 01-06.
Google Scholar
[5]
Park, Jongmin, Hai-Feng Jin, Byung-Ran Lim, Ki-Young Park, and Kisay Lee. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource technology 101, no. 22 (2010) 8649-8657.
DOI: 10.1016/j.biortech.2010.06.142
Google Scholar
[6]
Khai, Nguyen Manh, and T. Q. T. Hoang. Chemical Precipitation of Ammonia and Phosphate from Nam Son Landfill Leachate, Hanoi. Iranica Journal of Energy & Environment 3 (2012) 32-36.
DOI: 10.5829/idosi.ijee.2012.03.05.06
Google Scholar
[7]
Rahmani, A. R., A. H. Mahvi, A. R. Mesdaghinia, and S. Nasseri. Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite. International Journal of Environmental Science & Technology 1, no. 2 (2004) 125-133.
DOI: 10.1007/bf03325825
Google Scholar
[8]
Lahav, Ori, Yuval Schwartz, Paz Nativ, and Youri Gendel. Sustainable removal of ammonia from anaerobic-lagoon swine waste effluents using an electrochemically-regenerated ion exchange process. Chemical engineering journal 218 (2013) 214-222.
DOI: 10.1016/j.cej.2012.12.043
Google Scholar
[9]
Fan, Lu, Shixiang Wang, Yanlan Liu, Wenjing Yang, Xianyu Hou, Ying Su, Yi Zhao, Xuan Zhou, Qian Chen, and Yong Liu. Selective Reduction of NO 3--N from Wastewater to N 2 by Zn/Ag Bimetallic Particles Combined with Wet Ammonia Oxidation Process. Separation and Purification Technology (2018).
DOI: 10.1016/j.seppur.2018.01.025
Google Scholar
[10]
Jeong, Guk, Jae-Hoon Jung, Jun-Heok Lim, Yong Sun Won, and Jea-Keun Lee. A Computational Mechanistic Study of Breakpoint Chlorination for the Removal of Ammonia Nitrogen from Water. Journal of Chemical Engineering of Japan 47, no. 3 (2014) 225-229.
DOI: 10.1252/jcej.13we243
Google Scholar
[11]
Lin, Li, Songhu Yuan, Jing Chen, Zuqun Xu, and Xiaohua Lu. Removal of ammonia nitrogen in wastewater by microwave radiation. Journal of hazardous materials 161, no. 2 (2009) 1063-1068.
DOI: 10.1016/j.jhazmat.2008.04.053
Google Scholar
[12]
Jiang X., Cheng Z., Ma W., Gao Z., Ma X. and Wang R. Removal of Ammonia from Wastewater by Natural Freezing Method. International Conference on Chemical, Material and Food Engineering. (2015) 174 – 177.
DOI: 10.2991/cmfe-15.2015.41
Google Scholar
[13]
Matouq, Mohammed Abu-Dayeh, and Zaid A. Al-Anber. The application of high frequency ultrasound waves to remove ammonia from simulated industrial wastewater. Ultrasonics sonochemistry 14, no. 3 (2007) 393-397.
DOI: 10.1016/j.ultsonch.2006.09.003
Google Scholar
[14]
Doosti, M. R., R. Kargar, and M. H. Sayadi. Water treatment using ultrasonic assistance: A review. Proceedings of the International Academy of Ecology and Environmental Sciences 2, no. 2 (2012) 96.
Google Scholar
[15]
Ning, Ping, Hans-Jörg Bart, Yijiao Jiang, A. De Haan, and C. Tien. Treatment of organic pollutants in coke plant wastewater by the method of ultrasonic irradiation, catalytic oxidation and activated sludge. Separation and Purification Technology 41, no. 2 (2005) 133-139.
DOI: 10.1016/j.seppur.2004.02.004
Google Scholar
[16]
Shirsath, S. R., S. H. Sonawane, and P. R. Gogate. Intensification of extraction of natural products using ultrasonic irradiations—a review of current status. Chemical Engineering and Processing: Process Intensification 53 (2012) 10-23.
DOI: 10.1016/j.cep.2012.01.003
Google Scholar
[17]
Belgiorno, Vincenzo, Luigi Rizzo, Despo Fatta, Claudio Della Rocca, Giusy Lofrano, Anastasia Nikolaou, Vincenzo Naddeo, and Sureyya Meric. Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 215, no. 1-3 (2007) 166-176.
DOI: 10.1016/j.desal.2006.10.035
Google Scholar
[18]
Matouq, Mohammed Abu-Dayeh, and Zaid A. Al-Anber. The application of high frequency ultrasound waves to remove ammonia from simulated industrial wastewater. Ultrasonics sonochemistry 14, no. 3 (2007) 393-397.
DOI: 10.1016/j.ultsonch.2006.09.003
Google Scholar
[19]
Rahimi, Masoud, Sahar Safari, Mahboubeh Faryadi, and Negin Moradi. Experimental investigation on proper use of dual high-low frequency ultrasound waves—Advantage and disadvantage. Chemical Engineering and Processing: Process Intensification 78 (2014) 17-26.
DOI: 10.1016/j.cep.2014.02.003
Google Scholar
[20]
Xu, Jinqiu, Jinping Jia, and Jingwei Wang. Ultrasonic Decomposition of Ammonia‐Nitrogen and Organic Compounds in Coke Plant Wastewater. Journal of the Chinese Chemical Society 52, no. 1 (2005) 59-65.
DOI: 10.1002/jccs.200500009
Google Scholar
[21]
Ozturk, Emrah, and Nazire Bal. Evaluation of ammonia–nitrogen removal efficiency from aqueous solutions by ultrasonic irradiation in short sonication periods. Ultrasonics sonochemistry 26 (2015) 422-427.
DOI: 10.1016/j.ultsonch.2015.02.012
Google Scholar
[22]
Xu, Jinqiu, Jinping Jia, and Jingwei Wang. Ultrasonic Decomposition of Ammonia‐Nitrogen and Organic Compounds in Coke Plant Wastewater. Journal of the Chinese Chemical Society 52, no. 1 (2005) 59-65.
DOI: 10.1002/jccs.200500009
Google Scholar
[23]
Wang, Xikui, Zhongyan Yao, Jingang Wang, Weilin Guo, and Guoliang Li. Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation. Ultrasonics Sonochemistry 15, no. 1 (2008) 43-48.
DOI: 10.1016/j.ultsonch.2007.01.008
Google Scholar
[24]
Ozturk, Emrah, and Nazire Bal. Evaluation of ammonia–nitrogen removal efficiency from aqueous solutions by ultrasonic irradiation in short sonication periods. Ultrasonics sonochemistry 26 (2015) 422-427.
DOI: 10.1016/j.ultsonch.2015.02.012
Google Scholar
[25]
Chen, Wei, Wei-Ping Wang, Hua-Shan Zhang, and Qin Huang. Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydrate Polymers 87, no. 1 (2012) 614-619.
DOI: 10.1016/j.carbpol.2011.08.029
Google Scholar
[26]
Kumar, Arvind, B. Prasad, and I. M. Mishra. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design. Journal of Hazardous Materials 150, no. 1 (2008) 174-182.
DOI: 10.1016/j.jhazmat.2007.09.043
Google Scholar
[27]
Khajeh, Mostafa, and Fatemeh Musavi Zadeh. Response surface modeling of ultrasound-assisted dispersive liquid–liquid microextraction for determination of benzene, toluene and xylenes in water samples: Box–Behnken design. Bulletin of environmental contamination and toxicology 89, no. 1 (2012) 38-43.
DOI: 10.1007/s00128-012-0657-0
Google Scholar
[28]
Jain, Monika, V. K. Garg, and K. Kadirvelu. Investigation of Cr (VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology, Bioresource technology 102, no. 2 (2011) 600-605.
DOI: 10.1016/j.biortech.2010.08.001
Google Scholar
[29]
Yuan X., Liu J., Zeng G., Shi J., Tong J. and Huang G. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy, 33, (2008) 1678 – 1684.
DOI: 10.1016/j.renene.2007.09.007
Google Scholar