Effect of Organic Nutrient Addition to the Biodegradation of Hydrocarbon Contaminated Marine Sediment in Malaysia

Article Preview

Abstract:

The effect of organic nutrient on the biodegradation of hydrocarbon contaminated marine sediment in Malaysia was investigated. Biodegradation was assessed in microcosm experiments containing 10% (w/w) of crude oil amended with fertilizers in three ways, which were with inorganic nutrients (NP), organic matter in the form of plant-based (Elaeis guineensis) and fish-amendments (Scomber australasicus). It was observed that hydrocarbon degradation occurred in all treatments, with the highest biodegradation rates in S. australasicus supplemented sediment. The addition of S. australasicus managed to reduce the oil concentration to 48% while the addition of E. guineensis and inorganic NP reduced the final oil concentration to 66% and 63% respectively. All three amendments show faster degradation rate compared to the control. Isolation of the soil sample on specific nutrient agar, centrimide, revealed the presence of Pseudomonas aeruginosa that are well known for its ability to degrade hydrocarbon in crude oil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-83

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Libes, Introduction to Marine Biogeochemistry, Elsevier Inc.,USA, (2009).

Google Scholar

[2] M.A. Abrams, Significance of hydrocarbon seepage relative to petroleum generation and entrapment, Marine and Petroleum Geology. 22(4) (2005) 457–477.

DOI: 10.1016/j.marpetgeo.2004.08.003

Google Scholar

[3] S. K. Samanta, O.V. Singh, & J.K. Jain, Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation, Trends in Biotechnology. 20(6) (2002) 243–248.

DOI: 10.1016/s0167-7799(02)01943-1

Google Scholar

[4] M.P. Zakaria & H. Takada, Case Study. Oil Spills in the Strait of Malacca, Malaysia, Oil Spill Environmental Forensics. (2007) 489–504.

DOI: 10.1016/b978-012369523-9/50020-3

Google Scholar

[5] F. Muttin, Structural analysis of oil-spill containment booms in coastal and estuary waters, Applied Ocean Research. 30(2) (2008) 107–112.

DOI: 10.1016/j.apor.2008.07.001

Google Scholar

[6] V. Broje & A.A. Keller, Effect of operational parameters on the recovery rate of an oleophilic drum skimmer, Journal of Hazardous Materials. 148(1–2) (2007) 136–143.

DOI: 10.1016/j.jhazmat.2007.02.017

Google Scholar

[7] M. Grote, C. van Bernem, B. Böhme, U. Callies, I. Calvez, B. Christie B, K. Colcomb, H-P. Damian, H. Farke, C. Gräbsch, A. Hunt, T. Höfer, J. Knaack, U. Kraus, S. Le Floch, G. Le Lann, H. Leuchs, A. Nagel, H. Nies, W. Nordhausen, J. Rauterberg, D. Reichenbach, G. Scheiffarth, F. Schwichtenberg, N. Theobald, J. Voß & D-S Wahrendorf, The potential for dispersant use as a maritime oil spill response measure in German waters, Marine Pollution Bulletin. April. (2017).

DOI: 10.1016/j.marpolbul.2017.10.050

Google Scholar

[8] P. Li, Q. Cai, W. Lin, B. Chen, & B. Zhang, Offshore oil spill response practices and emerging challenges, Marine Pollution Bulletin. 110(1) (2016) 6–27.

DOI: 10.1016/j.marpolbul.2016.06.020

Google Scholar

[9] X. Zhu, A. Venosa, M. Suidan & K. Lee, Guidelines for the bioremediation of oil-contaminated salt marshes, Epa. July (2004) 1–61.

Google Scholar

[10] C.H. Chaîneau, G. Rougeux, C. Yéprémian, J. Oudot, Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil, Soil Biology and Biochemistry. 37(8) (2005) 1490-1497.

DOI: 10.1016/j.soilbio.2005.01.012

Google Scholar

[11] N. Das and P. Chandran, Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview,, Biotechnology Research International. (2011).

DOI: 10.4061/2011/941810

Google Scholar

[12] A. Horel. & S. Schiewer, Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils, Cold Regions Science and Technology. 58(3) (2009) 113–119.

DOI: 10.1016/j.coldregions.2009.04.004

Google Scholar

[13] C.B. Chikere, G.C. Okpokwasili & B.O. Chikere, Monitoring of microbial hydrocarbon remediation in the soil, 3 Biotech.1(3) (2011) 117–138.

DOI: 10.1007/s13205-011-0014-8

Google Scholar

[14] A. Horel, B. Mortazavi, A.S Patricia, Biostimulation of weathered MC252 crude oil in northern Gulf of Mexico sandy sediments, International Biodeterioration & Biodegradation. Volume 93 (2014) 1-9.

DOI: 10.1016/j.ibiod.2014.04.025

Google Scholar

[15] U.J.J. Ijah, H. Safiyanu, O.P. Abioye, Comparative Study Of Biodegradation Of Crude Oil In Soil Amended With Chicken Droppings And NPK Fertilizer, Science World Journal. Vol 3(2) (2008) 63-67.

DOI: 10.4314/swj.v3i2.51796

Google Scholar

[16] Information on https://www.thestar.com.my/news/nation/2014/06/19/malaysians-eat-more-fish-than-japanese-reveals-study.

Google Scholar

[17] N. Abdullah, F. Sulaiman, The Oil Palm Waste in Malaysia, in: M.D. Matovic, Biomass Now: Sustainable Growth and Use, IntechOpen, 2013, pp.75-100.

Google Scholar

[18] Y.S. Hii, A.T. Law, N.A.M. Shazili, M.K. Abdul-Rashid & C.W. Lee, Biodegradation of Tapis blended crude oil in marine sediment by a consortium of symbiotic bacteria, International Biodeterioration and Biodegradation. 63(2) (2009) 142–150.

DOI: 10.1016/j.ibiod.2008.08.003

Google Scholar

[19] Epa. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. EPA 823-B-01-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC. October (2011) 1–20.

Google Scholar

[20] Ofoegbu RU, Momoh YOL, Nwaogazie IL, Bioremediation of Crude Oil Contaminated Soil Using Organic and Inorganic Fertilizers, J Pet Environ Biotechnol. 6(1) (2015) 198.

DOI: 10.4172/2157-7463.1000198

Google Scholar

[21] P. Agamuthu, Y.S. Tan, S.H. Fauziah, Bioremediation of Hydrocarbon Contaminated Soil Using Selected Organic Wastes, Procedia Environmental Sciences. Volume 18 (2013) 694-702.

DOI: 10.1016/j.proenv.2013.04.094

Google Scholar

[22] Cetrimide Selective Agar Intended Use. (n.d.). Retrieved from https://assets.thermofisher.com/TFS-Assets/LSG/manuals/IFU452801.pdf.

Google Scholar

[23] B. Chettri, A. Mukherjee, J.S. Langpoklakpam, J. S., D. Chattopadhyay & A.K. Singh, Kinetics of nutrient enhanced crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2 isolated from Guwahati refinery, India, Environmental Pollution. 216 (2016) 548–558.

DOI: 10.1016/j.envpol.2016.06.008

Google Scholar

[24] H. Gao, J. Zhang, H. Lai & Q. Xue, Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil, International Biodeterioration and Biodegradation. 122 (2017) 12–22.

DOI: 10.1016/j.ibiod.2017.04.010

Google Scholar

[25] J. Thaniyavarn, A. Chongchin, N. Wanitsuksombut, S. Thaniyavarn, P. Pinphanichakarn, N. Leepipatpiboon, M. Morikawa., S. Kanaya, Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source, The Journal of General and Applied Microbiology. 52(4) (2006) 215–222.

DOI: 10.2323/jgam.52.215

Google Scholar

[26] A. Hamzah, H. Saiful, S. Kipli & I. Rahil. Microbiological Study in Coastal Water of Port Dickson, Malaysia (Kajian Mikrobiologi Air di Pesisiran Pantai Port Dickson, Malaysia), Sains Malaysiana, 40(2) (2011) 93–99.

DOI: 10.17576/jsm-2015-4401-13

Google Scholar

[27] J.G. Speight & N.S. El-Gendy, Introduction to petroleum biotechnology, Gulf Professional Publishing, Egypt, (2017).

Google Scholar

[28] R. Vasanthakumari, Textbook of Microbiology, BI Publications Pvt Ltd, New Delhi, (2007).

Google Scholar

[29] J.E. Lepo, & C.R. Cripe. Biodegradation of Polycyclic Aromatic Hydrocarbons (PAH) from crude oil in sandy-beach microcosms, in: Microbial Biosystems: New Frontiers Proceedings of the 8th International Symposium on Microbial Ecology, C.R. Bell, M. Brylinsky, P. Johnson-Green (eds) Atlantic Canada Society for Microbial Ecology, Halifax, Canada, (1999).

Google Scholar

[30] Singh, Rajeev, Organic Fertilizers: Types, Production and Environmental Impact, Nova Science Publisher Inc., New York, (2012).

Google Scholar

[31] K.L. Goodner .Affect of Turbidity On Color Measurements. Sensus Technical Note (SEN-TN-0007) (2008) 1–2.

Google Scholar

[32] O. Thomas & C. Burgess, UV-visible spectrophotometry of water and wastewater (2 Ed.), Elseviee Science, (2017).

Google Scholar

[33] N.N. Rabalais, R.E. Turner, R.J. Diaz & D. Justic, Global change and eutrophication of coastal waters, ICES Journal of Marine Science. 66(7) (2009) 1528–1537.

DOI: 10.1093/icesjms/fsp047

Google Scholar