Synthesis of Hybrid Cu-Doped TiO2 Photocatalyst for Dye Removal

Article Preview

Abstract:

Titanium dioxide (TiO2) photocatalyst is one of the promising semiconductors used for the degradation of commercial dyes. However, it has to be doped with other metals to increase its efficiency, reactivity and stability. This study was carried out to synthesize hybrid Cu-doped TiO2 using wet impregnation method by varying the loading of copper precursor (0.3-1.0 wt%), incubation temperature (50-90°C) and incubation time (1-24 h). The synthesized hybrid Cu-doped TiO2 was characterized using XRD, EDX, FESEM and BET to obtain the structural, elemental, and surface morphological information. The photocatalytic activities of the synthesized Cu-doped TiO2 were investigated for the degradation of methyl orange (MO) under UV-light irradiation. The results revealed that the optimum Cu loading was at 0.5wt% Cu with incubation temperature of 50°C and 2h incubation time. The hybrid Cu-doped TiO2 showed an excellent dye degradation efficiency ranging from 40-82% under UV-light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-91

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Pirkarami and M.E. Olya, Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism, Journal of Saudi Chemical Society 21 (2017) S179-S186.

DOI: 10.1016/j.jscs.2013.12.008

Google Scholar

[2] J. Polak, A. J. Wilkolazka, A. S. Ciesielska, K. Wlizlo, M. Kopycinska , J. S. Ledakowicz, J. L. Olczyk, Toxicity and dyeing properties of dyes obtained through laccase-mediated synthesis. Journal of Cleaner Production 112(5) (2016) p.4265–4272.

DOI: 10.1016/j.jclepro.2015.07.044

Google Scholar

[3] A. Gnanaprakasam, A., V.M. Sivakumar and M. Thirumarimurugan, Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian Journal of Materials Science (2015) pp.1-16.

DOI: 10.1155/2015/601827

Google Scholar

[4] Ö. Kerkez-Kuyumcu, E. Kibar, K. Dayıoğlu, F. Gedik, A.N. Akın, and Ş. Özkara-Aydınoğlu, A comparative study for removal of different dyes over M/TiO2 (M=Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 311 (2015) pp.176-185.

DOI: 10.1016/j.jphotochem.2015.05.037

Google Scholar

[5] S.H.S. Chan, T.Y. Wu, J. C. Juan and C. Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, Journal of Chemical Technology & Biotechnology 86 (2011) p.1130–1158.

DOI: 10.1002/jctb.2636

Google Scholar

[6] Z. Liu and C. Zhou, Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying. Progress in Natural Science: Materials International 25(4) (2015) pp.334-341.

DOI: 10.1016/j.pnsc.2015.07.005

Google Scholar

[7] S. Bagheri, N. Muhd Julkapli and S. Bee Abd Hamid, Titanium dioxide as a catalyst support in heterogeneous catalysis. The Scientific World Journal (2014).

DOI: 10.1155/2014/727496

Google Scholar

[8] J. Araña, A. Peña Alonso, J.M. Doña Rodríguez, J.A. Herrera Melián, O. González Díaz, J. Pérez Peña, Comparative Study Of Mtbe Photocatalytic Degradation With TiO2 And Cu-TiO2, Applied Catalysis B: Environmental 78(3–4) (2008) pp.355-363.

DOI: 10.1016/j.apcatb.2007.09.023

Google Scholar

[9] S. M. Reda, M. Khairy and M. A. Mousa. Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process, Arabian Journal of Chemistry (2017) In press.

DOI: 10.1016/j.arabjc.2017.02.002

Google Scholar

[10] B. Khodadadi, M. Sabeti, S. Moradi, S., P. A. Azar and S. R. Farshid, Synthesis of Cu-TiO2 nanocomposite and investigation of the effectiveness of PEG, Pectin, and CMC as additives, Journal of Applied Chemical Research 20(1) (2012) pp.36-44.

Google Scholar

[11] U. G. Akpan and B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 170(2-3) (2009) pp.520-9.

DOI: 10.1016/j.jhazmat.2009.05.039

Google Scholar

[12] P. Dharmarajan, A. Sabastiyan, M. Y. Suvaikin, S. Titus, and C. Muthukumar, Photocatalytic degradation of reactive dyes in effluents employing copper doped titanium dioxide nanocrystals and direct sunlight. Chem. Sci. Trans 2(4) (2013) pp.1450-1458.

DOI: 10.7598/cst2013.575

Google Scholar

[13] M. Lei, N. Wang, L. Zhu, Q. Zhou, G. Nie, and H. Tang, Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites: A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper. Applied Catalysis B: Environmental 182 (2016) pp.414-423.

DOI: 10.1016/j.apcatb.2015.09.031

Google Scholar

[14] J. Ma, H. He, and F. Liu, Effect of Fe on the photocatalytic removal of NOx over visible light responsive Fe/TiO2 catalysts. Applied Catalysis B: Environmental. 179 (2015) pp.21-28.

DOI: 10.1016/j.apcatb.2015.05.003

Google Scholar

[15] I. Ganesh, P. P. Kumar, I. Annapoorna, J.M. Sumliner, M. Ramakrishna, N. Y. Hebalkar, G. Padmanabham, and G. Sundararajan, Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Applied Surface Science, 293 (2014) pp.229-247.

DOI: 10.1016/j.apsusc.2013.12.140

Google Scholar

[16] W. Zhang, L. Zou and L. Wang, Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General. 371(1-2) (2009).

DOI: 10.1016/j.apcata.2009.09.038

Google Scholar

[17] Y. Li, W. N. Wang, Z. Zhan, M. H. Woo, C.Y. Wu and P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 100(1-2) (2010) pp.386-392.

DOI: 10.1016/j.apcatb.2010.08.015

Google Scholar

[18] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, and V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res, (13) (2004) pp.3001-8.

DOI: 10.1016/j.watres.2004.04.046

Google Scholar

[19] M. Reli, K. Koci, V. Matejka, P. Kovar, and L. Obalova, Effect of calcination temperatureand calcination time on the Kaolinite/TiO2 composite for photocatalytic reduction of CO2. GeoScience Engineering 8(4) (2012) pp.10-22.

DOI: 10.2478/v10205-011-0022-2

Google Scholar

[20] S. Kruanetr, N. Tan-arsa, and R. Wanchanthuek, The study of Methylene Blue removal by using mixed TiO2 as a catalyst under solar light irradiation. Journal of Scientific and Research Publication 3(6) (2003).

Google Scholar