Natural Deep Eutectic Solvent (NADES) as a Greener Alternative for the Extraction of Hydrophilic (Polar) and Lipophilic (Non-Polar) Phytonutrients

Article Preview

Abstract:

Phytonutrients extracted from natural resources are receiving much attention among researchers due to their highly antioxidative characteristics which prevent several degenerative diseases including cardiovascular diseases and cancers. These nutraceutical compounds can be used in food, pharmaceutical and cosmetic products as natural antioxidants, preservatives, colourings and functional foods. Though much works have been reported on the extraction process, there are concerns on the health and safety risks posed by the commonly used organic solvents derived from petrochemical industry. Thus, there is a need to recover the phytonutrients using green, sustainable, efficient and low cost solvents that are safe for human consumption. This work discusses natural deep eutectic solvent (NADES) as a potential solvent to extract both polar and non-polar phytonutrients simultaneously from natural resources. Previous attempts (in the most recent 3 years) to make use of NADES as an extractant to obtain phytonutrients are presented. The synthesis process of NADES and current challenges when employing NADES are also being reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-28

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Othman, Z.A. Manan, S.R. Wan Alwi and M.R. Sarmidi, A review of extraction technology for carotenoids and vitamin E recovery from palm oil, J. Appl. Sci. 10(12) (2010) 1187-1191.

DOI: 10.3923/jas.2010.1187.1191

Google Scholar

[2] H. Lores, V. Romero, I. Costas, C. Bendicho and I. Lavilla, Natural deep eutectic solvents in combination with ultrasound energy as a green approach for solubilisation of proteins: Application to gluten determination by immunoassay, Talanta 162 (2017) 453-459.

DOI: 10.1016/j.talanta.2016.10.078

Google Scholar

[3] Y.L. Kua, S. Gan, A. Morris and H.K. Ng, Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products, Sustainable Chemistry and Pharmacy 4 (2016) 21-31.

DOI: 10.1016/j.scp.2016.07.003

Google Scholar

[4] R. Davarnejad, K.M. Kassim, A. Zainal and S.A. Sata, Supercritical fluid extraction of beta-carotene from crude palm oil using CO2, J. Food Eng. 89(4) (2008) 472-478.

DOI: 10.1016/j.jfoodeng.2008.05.032

Google Scholar

[5] H.L.N. Lau, Y.M. Choo, A.N. Ma and C.H. Chuah, Selective extraction of palm carotene and vitamin E from fresh palm-pressed mesocarp fiber (Elaeis guineensis) using supercritical CO2, J. Food Eng. 84(2) (2008) 289-296.

DOI: 10.1016/j.jfoodeng.2007.05.018

Google Scholar

[6] R. Craveiro, I. Aroso, V. Flammia, T. Carvalho, M.T. Viviosa, M. Dionísio, S. Barreiros, R.I. Reis, A.R.C. Duarte and A. Paiva, Properties and thermal behaviour of natural deep eutectic solvents, J. Mol. Liq. 215 (2016) 534-540.

DOI: 10.1016/j.molliq.2016.01.038

Google Scholar

[7] A.K. Kumar, S. Sharma, E. Shah and A. Patel, Technical assessment of natural deep eutectic solvent (NADES), J. Mol. Liq. (2018) In press.

Google Scholar

[8] N. Li, Y. Wang, K. Xu, Y. Huang, Q. Wen and X. Ding, Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein, Talanta 152 (2016) 23-32.

DOI: 10.1016/j.talanta.2016.01.042

Google Scholar

[9] K. Paduszyński and U. Domańska, Viscosity of ionic liquids: An extensive database and new group contribution model based on a feed-forward artificial neural network, J. Chem. Inf. Model 54(5) (2014) 1311-1324.

DOI: 10.1021/ci500206u

Google Scholar

[10] X. Peng, M.H. Duan, X.H. Yao, Y.H. Zhang, C.J. Zhao, Y.G. Zu and Y.J. Fu, Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent, Sep. Purif. Technol. 157 (2016) 249-257.

DOI: 10.1016/j.seppur.2015.10.065

Google Scholar

[11] L.I.N. Tomé, V. Baião, W. da Silva and C.M.A. Brett, Deep eutectic solvents for the production and application of new materials, Appl. Mater. Today 10 (2018) 30-50.

DOI: 10.1016/j.apmt.2017.11.005

Google Scholar

[12] Z. Wei, X. Qi, T. Li, M. Luo, W. Wang, Y. Zu and Y. Fu, Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography, Sp. Purif. Technol. 149 (2015) 237-244.

DOI: 10.1016/j.seppur.2015.05.015

Google Scholar

[13] Y.H. Choi, J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I.W.C.E. Arends, G.J. Witkamp and R. Verpoorte, Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?, Plant Physiol. 156 (2011) 1701-1705.

DOI: 10.1104/pp.111.178426

Google Scholar

[14] Y. Liu, J. Garzon, J.B. Friesen, Y. Zhang, J.B. MsAlpine, D.C. Lankin, S.N. Chen and G.F. Pauli, Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents, Fitoterapia 112 (2016) 30-37.

DOI: 10.1016/j.fitote.2016.04.019

Google Scholar

[15] M.C. Bubalo, S. Vidović, I.R. Redovniković and S. Jokić, Green solvents for green technologies, J. Chem. Technol. Biotechnol. 90 (2015) 1631-1639.

DOI: 10.1002/jctb.4668

Google Scholar

[16] P. Paiva, R. Craveiro, I. Aroso, M. Martins, R.I. Reis and A.R.C. Duarte, Natural deep eutectic solvents-solvents for the 21st century, ACS Sustain. Chem. Eng. 2 (2014) 1063-1071.

DOI: 10.1021/sc500096j

Google Scholar

[17] M. Espino, M.A. Fernández, F.J.V. Gomez and M.F. Silva, Natural designer solvents for greening analytical chemistry, Trends Anal. Chem. 76 (2016) 126-136.

DOI: 10.1016/j.trac.2015.11.006

Google Scholar

[18] I. Juneidi, M. Hayyan and M.A. Hashim, Intensification of biotransformations using deep eutectic solvents: Overview and outlook, Process Biochem. 66 (2018) 33-60.

DOI: 10.1016/j.procbio.2017.12.003

Google Scholar

[19] Y.B. Mbous, M. Hayyan, A. Hayyan, W.F. Wong, M.A. Hashim and C.Y. Looi, Applications of deep eutectic solvents in biotechnology and bioengineering-promises and challenges, Biotechnol. Adv. 35 (2017) 105-134.

DOI: 10.1016/j.biotechadv.2016.11.006

Google Scholar

[20] M.H. Zainal-Abidin, M. Hayyan, A. Hayyan and N.S. Jayakumar, New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review, Anal. Chim. Acta 979 (2017) 1-23.

DOI: 10.1016/j.aca.2017.05.012

Google Scholar

[21] Y. Dai, E. Rozema, R. Verpoorte and Y.H. Choi, Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents, J. Chromatogr. A 1434 (2016) 50-56.

DOI: 10.1016/j.chroma.2016.01.037

Google Scholar

[22] Q. Zhang, K.O. Vigier, S. Royer and F. Jérome, Deep eutectic solvents: Synthesis, properties and applications, Chem. Soc. Rev. 41 (2012) 7108-7146.

DOI: 10.1039/c2cs35178a

Google Scholar

[23] M.C. Gutiérrez, M.I. Ferrer, C.R. Mateo and F.D. Monte, Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures, Langmuir 25 (2009) 5509-5515.

DOI: 10.1021/la900552b

Google Scholar

[24] K. Radošević, N. Ćurko, V.G. Srček, M.C. Bubalo, M. Tomašević, K.K. Ganić and I.R. Redovniković, Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity, LWT-Food Sci. Technol. 73 (2016) 45-51.

DOI: 10.1016/j.lwt.2016.05.037

Google Scholar

[25] S.P. Verevkin, A.Y. Sazonova, A.K. Frolkova, D.H. Zaitsau, I.V. Prikhodko and C. Held, Separation performance of BioRenewable deep eutectic solvents, Ind. Eng. Chem. Res. 54 (2015) 3498-3504.

DOI: 10.1021/acs.iecr.5b00357

Google Scholar

[26] S. Daneshjou, S. Khodaverdian, B. Dabirmanesh, F. Rahimi, S. Daneshjoo, F. Ghazi and K. Khajeh, Improvement of chondroitinases ABCI stability in natural deep eutectic solvents, J. Mol. Liq. 227 (2017) 21-25.

DOI: 10.1016/j.molliq.2016.11.130

Google Scholar

[27] P. Makela, Agro-industrial uses of glycinebetaine, Sugar Tech. 6 (2004) 207-212.

DOI: 10.1007/bf02942500

Google Scholar

[28] Y. Gu and F. Jérôme, Glycerol as a sustainable solvent for green chemistry, Green Chem. 12 (2010) 1127-1138.

DOI: 10.1039/c001628d

Google Scholar

[29] T. Khezeli, A. Daneshfar and R. Sahraei, A green ultrasound-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil, Talanta 150 (2016) 577-585.

DOI: 10.1016/j.talanta.2015.12.077

Google Scholar

[30] A.P. Abbott, D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (2004) 9142-9147.

DOI: 10.1021/ja048266j

Google Scholar

[31] S. Machmudah, S.D. Lestari, Widiyastuti, Wahyudiono, H. Kanda, S. Winardi and M. Goto, Subcritical water extraction enhancement by adding natural deep eutectic solvent for extracting xanthone from mangosteen pericarps, J. Supercrit. Fluids 133 (2018) 615-624.

DOI: 10.1016/j.supflu.2017.06.012

Google Scholar

[32] K.O. Wikene, H.V. Rukke, E. Bruzell and H.H. Tønnesen, Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy, J. Photochem. Photobiol. 171 (2017) 27-33.

DOI: 10.1016/j.jphotobiol.2017.04.030

Google Scholar

[33] Y. Liu, Y. Zhang, S.N. Chen, J.B. Friesen, D. Nikolić, M.P. Choules, J.B. McAlpine, D.C. Lankin, R.A. Gemeinhart and G.F. Pauli, The influence of natural deep eutectic solvents on bioactive natural products: Studying interactions between a hydrogel model and Schisandra chinensis metabolites, Fitoterapia (2018) In press.

DOI: 10.1016/j.fitote.2018.02.024

Google Scholar

[34] T. Bosiljkov, F. Dujmić, M.C. Bubalo, J. Hribar, R. Vidrih, M. Brnčić, E. Zlatic, I.R. Redovniković and S. Jokić, Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins, Food Bioprod. Process. 102 (2017) 195-203.

DOI: 10.1016/j.fbp.2016.12.005

Google Scholar

[35] I. Zahrina, M. Nasikin, E. Krisanti and K. Mulia, Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents, Food Chem. 240 (2018) 490-495.

DOI: 10.1016/j.foodchem.2017.07.132

Google Scholar

[36] Y. Dai, G.J. Witkamp, R. Verpoorte and Y.H. Choi, Natural deep-eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L., Anal. Chem. 85 (2013) 6272-6278.

DOI: 10.1021/ac400432p

Google Scholar

[37] Y. Huang, F. Feng, J. Jiang, Y. Qiao, T. Wu, J. Voglmeir and Z.G. Chen, Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents, Food Chem. 221 (2017) 1400-1405.

DOI: 10.1016/j.foodchem.2016.11.013

Google Scholar

[38] T. Altamash, M.S. Nasser, Y. Elhamarnah, M. Magzoub, R. Ullah, H. Qiblawey, S. Aparicio and M. Atilhan, Gas solubility and rheological behaviour study of betaine and alanine based natural deep eutectic solvents (NADES), J. Mol. Liq. 256 (2018) 286-295.

DOI: 10.1016/j.molliq.2018.02.049

Google Scholar

[39] W. Liu, K. Zhang, J. Chen and J. Yu, Ascorbic acid and choline chloride: A new natural deep eutectic solvent for extracting tert-butylhydroquinone antioxidant, J. Mol. Liq. (2018) In press.

DOI: 10.1016/j.molliq.2018.03.092

Google Scholar

[40] M.W. Nam, J. Zhao, M.S. Lee, J.H. Jeong and J. Lee, Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae, Green Chem. 17 (2015) 1718-1727.

DOI: 10.1039/c4gc01556h

Google Scholar

[41] S. Bajkacz and J. Adamek, Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products, Talanta 168 (2017) 329-335.

DOI: 10.1016/j.talanta.2017.02.065

Google Scholar

[42] M.C. Bubalo, N. Ćurko, M. Tomašević, K.K. Ganić and I.R. Redovniković, Green extraction of grape skin phenolics by using deep eutectic solvents, Food Chem. 200 (2016) 159-166.

DOI: 10.1016/j.foodchem.2016.01.040

Google Scholar

[43] V.M. Paradiso, A. Clemente, C. Summo, A. Pasqualone and F. Capanio, Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection, Food Chem. 212 (2016) 43-47.

DOI: 10.1016/j.foodchem.2016.05.082

Google Scholar

[44] S. Khodaverdian, B. Dabirmanesh, A. Heydari, E. Dashtban-moghadam, K. Khajeh and F. Ghazi, Activity, stability and structure of laccase in betaine based natural deep eutectic solvents, Int. J. Biol. Macromol. 107 (2018) 2574-2579.

DOI: 10.1016/j.ijbiomac.2017.10.144

Google Scholar

[45] R. Xin, S. Qi, C. Zeng, F.I. Khan, B. Yang and Y. Wang, A functional natural deep eutectic solvent based on trehalose: Structural and physicochemical properties, Food Chem. 217 (2017) 560-567.

DOI: 10.1016/j.foodchem.2016.09.012

Google Scholar

[46] Y. Dai, R. Verpoorte and Y.H. Choi, Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius), Food Chem. 159 (2014) 116-121.

DOI: 10.1016/j.foodchem.2014.02.155

Google Scholar

[47] A. García, E.R. Juan, G.R. Gutiérrez, J.J. Rios and J.F. Bolaños, Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs), Food Chem. 197 (2016) 554-561.

DOI: 10.1016/j.foodchem.2015.10.131

Google Scholar

[48] Y. Dai, J. van Spronsen, G.J. Witkamp, R. Verpoorte and Y.H. Choi, Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta 766 (2013) 61-68.

DOI: 10.1016/j.aca.2012.12.019

Google Scholar