Application of Coconut Copra as Biosorbent for Removal of Heavy Metals

Article Preview

Abstract:

Previous studies have evidenced that coconut copra is a potential biosorbent for removal of dissolved organic carbon from peat swamp runoff attaining an average removal of 96 %. The capability of coconut copra in removing heavy metals including cadmium (Cd), chromium (Cr) and nickel (Ni) is scarcely reported. In this paper, response surface methodology was applied to evaluate the optimum conditions for removal of Cd, Cr and Ni from aqueous solution using raw coconut copra. Batch adsorption experiments were conducted according to inscribed central composite design. Response surface models further identified the optimum dosage, pH and contact time for Cd removal is 1.5 g, pH 11 and 60 min, Cr removal is 0.1 g, pH 8.48 and 60 min while Ni removal is 0.1 g, pH 11 and 15 min. Bimodality is observed in response surface graphs, implying the possible existence of two equilibrium phase during the adsorption process. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models were employed to describe the adsorption behaviour. Results revealed that raw coconut copra can remove 4.55 mg/g of Cd, 8.71 mg/g of Cr and 26.46 mg/g of Ni. The adsorption processes are physical adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Lakherwal, Adsorption of heavy metals : A review, Int. J. Environ. Res. Dev. 4 (2014) 41–48.

Google Scholar

[2] W. World Health Organzation, WHO guidelines for drinking-water quality, 4th ed., WHO Press, Switzerland, (2011).

Google Scholar

[3] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review., J. Environ. Manage. 92 (2011) 407–18.

Google Scholar

[4] A. Bhatnagar, V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Coconut-based biosorbents for water treatment: A review of the recent literature, Adv. Colloid Interface Sci. 160 (2010) 1–15.

DOI: 10.1016/j.cis.2010.06.011

Google Scholar

[5] H.A. Al-Aoh, M.J. Maah, R. Yahya, M.R. Abas, Isotherms, kinetics and thermodynamics of 4-nitrophenol adsorption on fiber-based activated carbon from coconut husks prepared under optimized conditions, Asian J. Chem. 25 (2013) 9573–9581.

DOI: 10.14233/ajchem.2013.15082

Google Scholar

[6] V. de O. Sousa Neto, D.Q. Melo, T.C. de Oliveira, R. Nonato, P. Teixeira, M.A.A. Silva, R.F. do Nascimento, Evaluation of new chemically modified coconut shell adsorbents with tannic acid for Cu (II) removal from wastewater, J. Appl. Polym. Sci. 131 (2014) 1–11.

DOI: 10.1002/app.40744

Google Scholar

[7] M.M. Rahman, M. Adil, A.M. Yusof, Y.B. Kamaruzzaman, R.H. Ansary, Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells, Materials (Basel). 7 (2014) 3634–3650.

DOI: 10.3390/ma7053634

Google Scholar

[8] O.S. Bello, K.A. Adegoke, A.A. Olaniyan, H. Abdulazeez, Dye adsorption using biomass wastes and natural adsorbents: Overview and future prospects, Desalin. Water Treat. (2013) 1–24.

DOI: 10.1080/19443994.2013.862028

Google Scholar

[9] T.Z.E. Lee, C. Krongchai, N.A.L. Mohd Irwan Lu, S. Kittiwachana, S.F. Sim, Application of central composite design for optimization of the removal of humic substances using coconut copra, Int. J. Ind. Chem. 6 (2015) 185–191.

DOI: 10.1007/s40090-015-0041-0

Google Scholar

[10] M.A. Ashraf, K. Mahmood, A. Wajid, M.J. Maah, I. Yusoff, Study of low cost biosorbent for biosorption of heavy metals, in: Int. Conf. Food Eng. Biotechnol. Proc., 2011: p.60–68.

Google Scholar

[11] L.S. Chan, W.H. Cheung, S.J. Allen, G. McKay, Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon, Chinese J. Chem. Eng. 20 (2012) 535–542.

DOI: 10.1016/s1004-9541(11)60216-4

Google Scholar

[12] L. Cobb, S. Zacks, Applications of catastrophe modeling theory in for the statistical biosciences, J. Am. Stat. Assoc. 80 (1985) 793–802.

DOI: 10.1080/01621459.1985.10478184

Google Scholar

[13] C. Gresov, H.A. Haveman, T.A. Oliva, Organizational design, inertia and the dynamics of competitive response, Organ. Sci. 4 (1993) 181–208.

DOI: 10.1287/orsc.4.2.181

Google Scholar

[14] Z. Li, T.T. Teng, A.F.M. Alkarkhi, M. Rafatullah, L.W. Low, Chemical modification of Imperata Cylindrica leaf powder for heavy metal ion adsorption, Water, Air Soil Pollut. 224 (2013) 1505–1518.

DOI: 10.1007/s11270-013-1505-5

Google Scholar

[15] H. Aydin, Y. Bulut, C. Yerlikaya, Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents, J. Environ. Manage. 87 (2008) 37–45.

DOI: 10.1016/j.jenvman.2007.01.005

Google Scholar

[16] J. Mao, S.W. Won, S.B. Choi, M.W. Lee, Y.-S. Yun, Surface modification of the Corynebacterium glutamicum biomass to increase carboxyl binding site for basic dye molecules, Biochem. Eng. J. 46 (2009) 1–6.

DOI: 10.1016/j.bej.2009.04.004

Google Scholar

[17] D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, S.M. Lee, Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder, Carbohydr. Polym. 88 (2012) 1077–1086.

DOI: 10.1016/j.carbpol.2012.01.073

Google Scholar

[18] A.U. Itodo, H.U. Itodo, M.K. Gafar, Estimation of specific surface area using Langmuir isotherm method, J. Appl. Sci. Environ. Manag. 14 (2010) 141–145.

DOI: 10.4314/jasem.v14i4.63287

Google Scholar

[19] B. Volesky, Sorption and Biosorption, St. Lambert, Quebeck, Montreal, (2003).

Google Scholar

[20] M.A. Al-Anber, Thermodynamics approach in the adsorption of heavy metals, in: J.C. Moreno Piraján (Ed.), Thermodyn. - Interact. Stud. - Solids, Liq. Gases, InTech, 2011: p.737–764.

Google Scholar

[21] Y.S. Ho, A.E. Ofomaja, Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent, Biochem. Eng. J. 30 (2006) 117–123.

DOI: 10.1016/j.bej.2006.02.012

Google Scholar

[22] I. Khazaei, M. Aliabadi, H.T. Hamed Mosavian, Use of agricultural waste for removal of Cr (VI) from aqueous solution, Iran. J. Chem. Eng. 8 (2011) 11–23.

Google Scholar

[23] M. Saleem, N. Wongsrisujarit, S. Boonyarattanakalin, Removal of nickel (II) ion by adsorption on coconut copra meal biosorbent, Desalin. Water Treat. 57 (2015) 5623–5635.

DOI: 10.1080/19443994.2015.1005155

Google Scholar

[24] F.W. Sousa, A.G. Oliveira, J.P. Ribeiro, M.F. Rosa, D. Keukeleire, R.F. Nascimento, Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology., J. Environ. Manage. 91 (2010) 1634–40.

DOI: 10.1016/j.jenvman.2010.02.011

Google Scholar

[25] H. Parab, S. Joshi, N. Shenoy, A. Lali, U.S. Sarma, M. Sudersanan, Determination of kinetic and equilibrium parameters of the batch adsorption of Co (II), Cr (III) and Ni (II) onto coir pith, Process Biochem. 41 (2006) 609–615.

DOI: 10.1016/j.procbio.2005.08.006

Google Scholar

[26] P. Suksabye, P. Thiravetyan, W. Nakbanpote, S. Chayabutra, Chromium removal from electroplating wastewater by coir pith, J. Hazard. Mater. 141 (2006) 637–644.

DOI: 10.1016/j.jhazmat.2006.07.018

Google Scholar

[27] A. Ewecharoen, P. Thiravetyan, W. Nakbanpote, Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith, Chem. Eng. J. 137 (2008) 181–188.

DOI: 10.1016/j.cej.2007.04.007

Google Scholar

[28] J.C. Igwe, A.A. Abia, Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob, Eclet. Quim. 32 (2007) 33–42.

DOI: 10.1590/s0100-46702007000100005

Google Scholar

[29] R. Leyva-Ramos, L.A. Bernal-Jacome, I. Acosta-Rodriguez, Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob, Sep. Purif. Technol. 45 (2005) 41–49.

Google Scholar

[30] U.K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of hexavalent chromium from aqueous solution by agricultural waste biomass, J. Hazard. Mater. 140 (2007) 60–68.

DOI: 10.1016/j.jhazmat.2006.06.056

Google Scholar

[31] M.A. Ashraf, M.J. Maah, I. Yusoff, Study of mango biomass (Mangifera indica L.) as a cationic biosorbent, Int. J. Environ. Sci. Technol. 7 (2010) 581–590.

DOI: 10.1007/bf03326167

Google Scholar

[32] A. Saeed, M.W. Akhter, M. Iqbal, Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent, Sep. Purif. Technol. 45 (2005) 25–31.

DOI: 10.1016/j.seppur.2005.02.004

Google Scholar

[33] S. Al-Asheh, F. Banat, R. Al-Omari, Z. Duvnjak, Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data, Chemosphere. 41 (2000) 659–665.

DOI: 10.1016/s0045-6535(99)00497-x

Google Scholar

[34] W. Saikaew, P. Kaewsarn, W. Saikaew, Pomelo peel : Agricultural waste for biosorption of cadmium ions from aqueous solutions, World Acad. Sci. Eng. Technol. 3 (2009) 266–270.

Google Scholar

[35] M.N. Zafar, R. Nadeem, M.A. Hanif, Biosorption of nickel from protonated rice bran, J. Hazard. Mater. 143 (2007) 478–485.

DOI: 10.1016/j.jhazmat.2007.04.108

Google Scholar

[36] U. Kumar, M. Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresour. Technol. 97 (2006) 104–109.

DOI: 10.1016/j.biortech.2005.02.027

Google Scholar

[37] A.Y. Talokar, Studies on removal of chromium from waste water by adsorption using low cost agricultural biomass as adsorbents, Int. J. Adv. Biotechnol. Res. 2 (2011) 452–456.

Google Scholar

[38] F.W. Sousa, M.J. Sousa, I.R.N. Oliveira, A.G. Oliveira, R.M. Cavalcante, P.B.A. Fechine, V.O.S. Neto, D. de Keukeleire, R.F. Nascimento, Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory., J. Environ. Manage. 90 (2009) 3340–3344.

DOI: 10.1016/j.jenvman.2009.05.016

Google Scholar

[39] M.B. Desta, Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste, J. Thermodyn. (2013) 1–6.

DOI: 10.1155/2013/375830

Google Scholar

[40] Y. Bulut, Z. Tez, Removal of heavy metals from aqueous solution by sawdust adsorption, J. Environ. Sci. 19 (2007) 160–166.

DOI: 10.1016/s1001-0742(07)60026-6

Google Scholar

[41] A. Omri, M. Benzina, W. Trabelsi, N. Ammar, Adsorptive removal of humic acid on activated carbon prepared from almond shell: Approach for the treatment of industrial phosphoric acid solution, Desalin. Water Treat. 52 (2013) 2241–2252.

DOI: 10.1080/19443994.2013.800003

Google Scholar

[42] D.A. Tillman, A.J. Rossi, K.M. Vick, Fundamentals of solid hazardous waste combustion, in: Inciner. Munic. Hazard. Solid Wastes, Academic Press Inc, USA, 1989: p.157–200.

DOI: 10.1016/b978-0-12-691245-6.50009-2

Google Scholar

[43] R.S. Dias, A.A.C.C. Pais, Effect of the architecture on polyelectrolyte adsorption and condensation at responsive surfaces., J. Phys. Chem. 116 (2012) 9246–9254.

DOI: 10.1021/jp303540q

Google Scholar

[44] H. Ahn, C.H. Lee, Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds, Chem. Eng. Sci. 59 (2004) 2727–2743.

DOI: 10.1016/j.ces.2004.04.011

Google Scholar

[45] P.L. Llewellyn, Y. Grillet, F. Schüth, H. Reichert, K.K. Unger, Effect of pore size on adsorbate condensation and hysteresis within a potential model adsorbent: M41S, Microporous Mater. 3 (1994) 345–349.

DOI: 10.1016/0927-6513(94)00042-5

Google Scholar

[46] G. Mason, The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption—desorption isotherms, J. Colloid Interface Sci. 88 (1982) 36–46.

DOI: 10.1016/0021-9797(82)90153-9

Google Scholar

[47] C. Aharoni, Interaction between adsorption and condensation processes in a pore and its effect on hysteresis, Chem. Eng. Commun. 189 (2002) 429–435.

DOI: 10.1080/00986440212090

Google Scholar

[48] A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem. 3 (2012) 38–45.

DOI: 10.9790/5736-0313845

Google Scholar

[49] T.L. Kurth, G. Biresaw, A. Adhvaryu, Cooperative adsorption behavior of fatty acid methyl esters from hexadecane via coefficient of friction measurements, J. Am. Oil Chem. Soc. 82 (2005) 293–299.

DOI: 10.1007/s11746-005-1069-2

Google Scholar

[50] B.S.J. Prakash, Surface thermodynamics of clays, in: F. Wypych, K.G. Satyanarayana (Eds.), Clay Surfaces Fundam. Appl., Elsevier Academic Press, London, UK, 2004: p.90–117.

Google Scholar

[51] J.S. Piccin, G.L. Dotto, L.A.A. Pinto, Adsorption isotherms and thermochemical data of FD&C Red n° 40 binding by chitosan, Brazilian J. Chem. Eng. 28 (2011) 295–304.

DOI: 10.1590/s0104-66322011000200014

Google Scholar

[52] A.U. Itodo, H.U. Itodo, Sorption energies estimation using Dubinin-Radushkevich and Temkin adsorption isotherms, Life Sci. J. 7 (2010) 31–39.

Google Scholar

[53] B.E. Reed, M.R. Matsumoto, Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions, Sep. Sci. Technol. 28 (1993) 2179–2195.

DOI: 10.1080/01496399308016742

Google Scholar

[54] D.V.S. Bhagavanulu, K. V Kumar, Improvement of GAC sorption process: An overview, in: V.P. Singh, R.N. Yadava (Eds.), Wastewater Treat. Waste Manag. Proc. Int. Conf. Water Environ., Bhopal, India, 2003: p.256–263.

Google Scholar