The Effect of Carboxymethyl Cellulose as Bio Filler on Ionic Conductivity and Physical Property of Waste Cooking Oil Based Polyurethane Composite Polymer Electrolyte

Article Preview

Abstract:

Waste cooking oil (WCO) is an under-utilized, highly abundant raw material from food industry. In this study, WCO was used to prepare solid polymer electrolyte (SPE) films via solvent-free method. WCO was first pretreated and converted into polyol using epoxidation and hydroxylation reaction. Then, WCO-based polyol was combined with diisocyanate, LiCF3SO3 and carboxymethyl cellulose (CMC) to obtain polyurethane SPE films. CMC was added to SPE as bio-filler to observe the effect on ionic conductivity and mechanical properties of SPE. SPE films were characterized using Fourier transformed infrared spectroscopy, electrochemical impedance spectroscopy, x-ray diffraction spectrometer (XRD), differential scanning calorimetry and tensile strength. Addition of CMC resulted in increase of ionic conductivity up to 1.19 x 10-5 S/cm for 15% CMC. The ionic conductivity supported with reduced crystalline peaks intensity in XRD to show that the amorphous nature of SPE increased as more CMC added. Tensile strength also increased with addition of CMC and peaked at 10% CMC (34.17 MPa) due to effective hydrogen bond interaction between CMC and PU or salt. However, increased CMC amount further to 15% reduced tensile strength due to agglomeration of CMC particles. As a conclusion, addition of CMC is a viable method to improve both ionic conductivity and mechanical property of SPE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-288

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Muthu, R. N., Rajashabala, S., & Kannan, R. (2015). Synthesis and characterization of polymer (sulfonated poly-ether-ether-ketone) based nanocomposite (h-boron nitride) membrane for hydrogen storage. International Journal of Hydrogen Energy, 40(4), 1836-1845.

DOI: 10.1016/j.ijhydene.2014.11.136

Google Scholar

[2] Wang, S., & Min, K. (2010). Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer, 51(12), 2621-2628.

DOI: 10.1016/j.polymer.2010.04.038

Google Scholar

[3] Rani, M. S. A., Rudhziah, S., Ahmad, A., & Mohamed, N. S. (2014). Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers, 6(9), 2371-2385.

DOI: 10.3390/polym6092371

Google Scholar

[4] Li, Y. (2012). Application of cellulose nanowhisker and lignin in preparation of rigid polyurethane nanocomposite foams. Georgia Institute of Technology.

Google Scholar

[5] Su'ait, M. S., Ahmad, A., Badri, K. H., Mohamed, N. S., Rahman, M. Y. A., Ricardo, C. A., & Scardi, P. (2014). The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy, 39(6), 3005-3017.

DOI: 10.1016/j.ijhydene.2013.08.117

Google Scholar

[6] Sipaut, C. S., Murni, S., Saalah, S., Hoon, T. C., Ibrahim, M. M., Rahman, I. A., & Abdullah, A. A. (2012). Synthesis and characterization of polyols from refined cooking oil for polyurethane foam formation. Cellular Polymers, 31(1), 19.

DOI: 10.1177/026248931203100102

Google Scholar

[7] Ravi, M., Kumar, K. K., Mohan, V. M., & Rao, V. N. (2014). Effect of nano TiO2 filler on the structural and electrical properties of PVP based polymer electrolyte films. Polymer Testing, 33, 152-160.

DOI: 10.1016/j.polymertesting.2013.12.002

Google Scholar

[8] Jabbour, L., Destro, M., Gerbaldi, C., Chaussy, D., Penazzi, N., & Beneventi, D. (2012). Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. Journal of Materials Chemistry, 22(7), 3227-3233.

DOI: 10.1039/c2jm15117k

Google Scholar

[9] Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., ... & Gindl, W. (2010). current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1.

DOI: 10.1007/s10853-009-3874-0

Google Scholar

[10] Jafirin, S., Ahmad, I., & Ahmad, A. (2014). Komposit polimer elektrolit berasaskan 49% poli (metil metakrilat)-cangkukan getah asli diperkuat karboksimetil selulosa daripada kenaf. Malaysian Journal of Analytical Sciences, 18(2), 376-384.

Google Scholar

[11] Sharif Hossain, A. B. M. and AlEissa, M. S. (2016). Biodiesel Fuel Production from Palm, Sunflower Waste Cooking Oil and Fish Byproduct Waste as Renewable Energy and Environmental Recycling Process. British Biotechnology Journal, 10(4), 1-9.

DOI: 10.9734/bbj/2016/22338

Google Scholar

[12] Akintayo, C. O., Akintayo, E. T., Thomas, Z., and Babalola, B. M. (2013). Newly developed epoxy-polyol and epoxy-polyurethane from renewable resource. British Journal of Applied Science & Technology, 3(4), 984-993.

DOI: 10.9734/bjast/2013/3985

Google Scholar

[13] Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., & Sheltami, R. M. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3), 855-866.

DOI: 10.1007/s10570-012-9684-6

Google Scholar

[14] Zhang, C., Li, Y., Chen, R., and Kessler, M. (2014). Polyurethanes from Solvent-Free Vegetable Oil-Based Polyols. ACS Sustainable Chemistry & Engineering, 2(10), 2465-2476.

DOI: 10.1021/sc500509h

Google Scholar

[15] Naceur Abouloula, C., Rizwan, M., Selvanathan, V., Abdullah, C. I., Hassan, A., Yahya, R., & Oueriagli, A. (2018). A novel application for oil palm empty fruit bunch: extraction and modification of cellulose for solid polymer electrolyte. Ionics, 1-10.

DOI: 10.1007/s11581-018-2558-7

Google Scholar

[16] Li, Y., Luo, X. and Hu, S. (2015). Bio-based Polyols and Polyurethanes. Springer International Publishing.

Google Scholar

[17] Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C., & Beneventi, D. (2013). Cellulose-based Li-ion batteries: a review. Cellulose, 20(4), 1523-1545.

DOI: 10.1007/s10570-013-9973-8

Google Scholar

[18] Prajapati, G. K., Roshan, R., & Gupta, P. N. (2010). Effect of plasticizer on ionic transport and dielectric properties of PVA–H3PO4 proton conducting polymeric electrolytes. Journal of Physics and Chemistry of Solids, 71(12), 1717-1723.

DOI: 10.1016/j.jpcs.2010.08.023

Google Scholar