Biodegradation Characteristics of Tacca leontopetaloides Thermoplastic Films under Controlled Composting Conditions

Article Preview

Abstract:

This paper represents the biodegradation characterization of thermoplastic starch (TPS) films derived from Tacca leontopetaloides starch; namely thermoplastic starch with glycerol as plasticizer (TPS/GLY), thermoplastic starch with glycerol added with acetic acid (TPS/ACE) and thermoplastic starch with glycerol added with acetic acid with rice husk biochar reinforcement (TPS/BCRH) after aerobic biodegradation under controlled composting conditions. From the experiments, scanning electron micrograph (SEM) of the films showed homogeneous and even surface before the biodegradation but changed into grainy and uneven after subjecting to 45 days of biodegradation. Mechanical properties of all TPS films reduced significantly as expected. Even so, adding rice husk biochar did offer some strength to the TPS formulation. However, Fourier transform infrared (FT-IR) analysis suggested that 45 days of aerobic biodegradation was not capable to alter the chemical structure of the films as the characteristic peaks of all films are quite similar to before the biodegradation took place. The study also found that Aspegillus sp was the degrading TPS microorganism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-295

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. M. Fakhouri, D. Costa, F. Yamashita, S. M. Martelli, R. C. Jesus, K. Alganer and F. P. Collares-Queiroz, Comparative study of processing methods for starch/gelatin films,, Carbohydrate Polymers, vol. 95, no. 2, p.681–689, (2013).

DOI: 10.1016/j.carbpol.2013.03.027

Google Scholar

[2] A. M. Mohd Amin, S. Mohd Sauid and K. H. Ku Hamid, Polymer-Starch Blend Biodegradable Plastics : An Overview,, Advance Materials Reserach, vol. 1113, pp.93-98, (2015).

DOI: 10.4028/www.scientific.net/amr.1113.93

Google Scholar

[3] P. Liu, L. Yu, X. Wang, L. Chen and X. Li, Glass transition temperature of starches with different amylose / amylopectin ratios,, Journal of Cereal Science, vol. 51, no. 3, p.388–391, (2010).

DOI: 10.1016/j.jcs.2010.02.007

Google Scholar

[4] M. G. A. Vieira, M. A. da Silva, L. O. dos Santos and M. Beppu , Natural-based plasticizers and biopolymer films: A review,, European Polymer Journal, vol. 47, no. 3, p.254–263, (2011).

DOI: 10.1016/j.eurpolymj.2010.12.011

Google Scholar

[5] M. N. S. Makhtar, M. N. Muhd Rodhi, M. Musa and K. H. Ku Hamid, Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer,, International Journal of Polymer Science, vol. 2013, pp.1-7, (2013).

DOI: 10.1155/2013/373854

Google Scholar

[6] O. Das and A. K. Sarmah, Science of the Total Environment The love – hate relationship of pyrolysis biochar and water : A perspective ☆,, Science of the Total Environment, vol. 512–513, pp.682-685, (2015).

DOI: 10.1016/j.scitotenv.2015.01.061

Google Scholar

[7] A. M. Mohd Amin, S. Mohd Sauid, K. H. Ku Hamid and M. Musa, Biodegradation Behaviour of Thermoplastic Starch Films Derived from Tacca leontopetaloides Starch under Controlled Composting Condition,, IOP Conf. Series: Materials Science and Engineering, vol. 358, pp.1-6, (2018).

DOI: 10.1088/1757-899x/358/1/012050

Google Scholar

[8] A. A. Shah, F. Hasan, A. Hameed and S. Ahmed, Biological degradation of plastics: A comprehensive review,, Biotechnology Advances, vol. 26, pp.246-265, (2008).

DOI: 10.1016/j.biotechadv.2007.12.005

Google Scholar

[9] T. Leejarkpai, U. Suwanmanee, Y. Rudeekit and T. Mungcharoen, Biodegradable kinetics of plastics under controlled composting conditions,, Waste Management, vol. 31, no. 6, pp.1153-1161, (2011).

DOI: 10.1016/j.wasman.2010.12.011

Google Scholar

[10] C. Vijaya and R. M. Reddy, Impact of soil composting using municipal solid waste on biodegradation of plastics,, Indian Journal of Biotechnology, vol. 7, pp.235-239, (2008).

Google Scholar

[11] H. Ismail, R. Abdul Majid and R. Mat Taib, Effects of Soil Burial on Properties of Linear Density Polyethylene (LDPE)/Thermoplastic Sago Starch (TPSS) Blends,, Pertanika Journal of Science & Technology , vol. 19, no. 1, pp.189-197, (2011).

DOI: 10.1080/03602559.2010.482081

Google Scholar

[12] A. Khan , P. Savi, Q. Simone, M. Rovere, M. Giorcelli, A. Tagliaferro, C. Rosso and C. Q. Jia, Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites,, Polymers, vol. 9, pp.1-14, (2017).

DOI: 10.3390/polym9120642

Google Scholar

[13] P. Douglas, S. F. Tyrrel, R. P. Kinnersley, M. Whelan, P. J. Longhurst, A. L. Hansell, K. Walsh, S. J. T. Pollard and G. H. Drew, Predicting Aspergillus fumigatus exposure from composting facilities using a dispersion model: A conditional calibration and validation and calibration,, International Journal of Hygiene and Environmental Health, vol. 220, no. 1, pp.17-28, (2017).

DOI: 10.1016/j.ijheh.2016.09.017

Google Scholar

[14] M. Karamanlioglu, A. Houlden and G. D. Robson, Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly (lactic) acid (PLA) in soil and compost,, International Biodeterioration & Biodegradation , vol. 95, pp.301-310, (2014).

DOI: 10.1016/j.ibiod.2014.09.006

Google Scholar