Slow Pyrolysis Temperature and Duration Effects on Fuel Properties of Food Rice Waste Bio-Char

Article Preview

Abstract:

In this study, to convert high moisture content waste into bio-char, slow pyrolysis of cooked rice waste was proposed. The effects of temperature and duration of slow pyrolysis of cooked rice waste on the fuel properties of the biochar produced were investigated, namely the carbon content and energy density. The cooked rice waste was dried overnight at 80°C prior to pyrolysis to reduce moisture content. The carbon content was measured by using Thermo Finnigan Flash EA 1112 Series Elemental Analyser CHNS-O. Energy density was measured by using IKA Works C—5000 Control bomb calorimeter. Results demonstrated that pyrolysed rice waste at 250°C and 4 hour duration had the highest carbon content (60.30%). Moreover, the calorific values for pyrolysed cooked rice wastes demonstrated that biochar derived from cooked rice waste could be a promising alternative renewable energy source.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-326

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.thestar.com.my/news/nation/2016/05/24/malaysians-waste-15000-tonnes-of-food-daily.

Google Scholar

[2] J. Parfitt, M. Barthel, and S. MacNaughton, Food waste within food supply chains: Quantification and potential for change to 2050,, Philos. Trans. R. Soc. B Biol. Sci., vol. 365, no. 1554, p.3065–3081, (2010).

DOI: 10.1098/rstb.2010.0126

Google Scholar

[3] N. B. D. Thi, C. Y. Lin, and G. Kumar, Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy,, J. Clean. Prod., vol. 122, p.29–41, (2016).

DOI: 10.1016/j.jclepro.2016.02.034

Google Scholar

[4] A. M. A. El Naggar, H. M. Gobara, H. A. El Sayed, and F. S. Soliman, New advances in hydrogen production via the catalytic decomposition of wax by-products using nanoparticles of SBA frame-worked MoO3,, Energy Convers. Manag., vol. 106, p.615–624, (2015).

DOI: 10.1016/j.enconman.2015.10.002

Google Scholar

[5] S. E. Hosseini, M. A. Wahid, and A. Ganjehkaviri, An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia,, Energy Convers. Manag., vol. 94, p.415–429, (2015).

DOI: 10.1016/j.enconman.2015.02.012

Google Scholar

[6] Solid waste management & Recycling Technology of Japan - Toward a Sustainable Society,, (2012).

Google Scholar

[7] S. Sakai and M. Hiraoka, Municipal solid waste incinerator residue recycling by thermal processes,, Waste Manag., vol. 20, no. 2–3, p.249–258, (2000).

DOI: 10.1016/s0956-053x(99)00315-3

Google Scholar

[8] B. S. Cohen, H. Martinez, and A. Schroder, Waste Management Practices in New York City , Hong Kong and Beijing,, no. December, p.1–20, (2015).

Google Scholar

[9] N. Alert, Processing London ' s local food waste in an anaerobic digester avoids 3 . 9 tonnes of GHG emissions Processing London ' s local food waste in an anaerobic digester avoids 3 . 9 tonnes of GHG emissions ( continued ),, vol. 52, no. 503, (2018).

DOI: 10.1787/eco_surveys-lux-2012-graph38-en

Google Scholar

[10] C. Di Blasi, Modeling and simulation of combustion processes of charring and non-charring solid fuels,, Prog. Energy Combust. Sci., vol. 19, no. 1, p.71–104, Jan. (1993).

DOI: 10.1016/0360-1285(93)90022-7

Google Scholar

[11] M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, and N. Ashwath, Biofuels production through biomass pyrolysis- A technological review,, Energies, vol. 5, no. 12, p.4952–5001, (2012).

DOI: 10.3390/en5124952

Google Scholar

[12] P. Basu, Biomass Characteristics. Elsevier Inc., (2013).

Google Scholar

[13] M. Tripathi, J. N. Sahu, and P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review,, Renewable and Sustainable Energy Reviews, vol. 55. Elsevier Ltd, p.467–481, (2016).

DOI: 10.1016/j.rser.2015.10.122

Google Scholar

[14] M. A. Hossain, J. Jewaratnam, P. Ganesan, J. N. Sahu, S. Ramesh, and S. C. Poh, Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: Parametric investigation,, Energy Convers. Manag., vol. 115, p.232–243, (2016).

DOI: 10.1016/j.enconman.2016.02.058

Google Scholar

[15] H. Hashim, M. Narayanasamy, N. A. Yunus, L. J. Shiun, Z. A. Muis, and W. S. Ho, A cleaner and greener fuel: Biofuel blend formulation and emission assessment,, J. Clean. Prod., vol. 146, p.208–217, (2017).

DOI: 10.1016/j.jclepro.2016.06.021

Google Scholar

[16] M. A. Hamdan and R. H. Khalil, Simulation of compression engine powered by Biofuels,, Energy Convers. Manag., vol. 51, no. 8, p.1714–1718, (2010).

DOI: 10.1016/j.enconman.2009.10.037

Google Scholar

[17] A. O. Abdulrahman and D. Huisingh, The role of biomass as a cleaner energy source in Egypt's energy mix,, J. Clean. Prod., vol. 172, p.3918–3930, (2018).

DOI: 10.1016/j.jclepro.2017.05.049

Google Scholar

[18] L. F. Chuah, J. J. Klemeš, S. Yusup, A. Bokhari, and M. M. Akbar, A review of cleaner intensification technologies in biodiesel production,, J. Clean. Prod., vol. 146, p.181–193, (2017).

DOI: 10.1016/j.jclepro.2016.05.017

Google Scholar

[19] L. Lin, D. Ying, S. Chaitep, and S. Vittayapadung, Biodiesel production from crude rice bran oil and properties as fuel,, Appl. Energy, vol. 86, no. 5, p.681–688, (2009).

DOI: 10.1016/j.apenergy.2008.06.002

Google Scholar

[20] V. B. Borugadda and V. V. Goud, Biodiesel production from renewable feedstocks: Status and opportunities,, Renew. Sustain. Energy Rev., vol. 16, no. 7, p.4763–4784, (2012).

DOI: 10.1016/j.rser.2012.04.010

Google Scholar

[21] H. Liu, X. Ma, L. Li, Z. Hu, P. Guo, and Y. Jiang, Bioresource Technology The catalytic pyrolysis of food waste by microwave heating,, Bioresour. Technol., vol. 166, p.45–50, (2014).

DOI: 10.1016/j.biortech.2014.05.020

Google Scholar

[22] B. Zhang, Z. Zhong, M. Min, K. Ding, Q. Xie, and R. Ruan, Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study,, Bioresour. Technol., vol. 189, p.30–35, (2015).

DOI: 10.1016/j.biortech.2015.03.092

Google Scholar

[23] K. Konsolakis, M., Kaklidis, N., Marnellos, G.E., Zaharaki, D., Komnitsas, Assessment of biochar as feedstock in a direct carbon Solid Oxide Fuel Cell,, R. Soc. Chem., (2016).

DOI: 10.1039/c5ra13409a

Google Scholar

[24] P. McKendry, Energy production from biomass (Part 2): Conversion technologies.,, Bioresour. Technol., vol. 83, no. 1, p.47–54, (2002).

Google Scholar

[25] D. Mohan, C. U. Pittman, and P. H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review,, Energy and Fuels, vol. 20, no. 3, p.848–889, (2006).

DOI: 10.1021/ef0502397

Google Scholar

[26] A. R. Mohamed, Z. Hamzah, M. Z. M. Daud, and Z. Zakaria, The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed bed reactor,, Procedia Eng., vol. 53, p.185–191, (2013).

DOI: 10.1016/j.proeng.2013.02.024

Google Scholar

[27] Q. Yan, Effects of Pyrolysis Conditions on Yield of Bio-Chars from Pine Chips,, vol. 61, no. 11, p.367–371, (2011).

DOI: 10.13073/0015-7473-61.5.367

Google Scholar

[28] Q. Xie et al., Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production,, Bioresour. Technol., vol. 172, p.162–168, (2014).

DOI: 10.1016/j.biortech.2014.09.006

Google Scholar

[29] M. Balat and H. Balat, Recent trends in global production and utilization of bio-ethanol fuel,, Applied Energy. (2009).

DOI: 10.1016/j.apenergy.2009.03.015

Google Scholar

[30] H. Zhang, R. Xiao, H. Huang, and G. Xiao, Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor,, Bioresour. Technol., (2009).

DOI: 10.1016/j.biortech.2008.08.031

Google Scholar

[31] A. Demirbas, Effect of temperature on pyrolysis products from four nut shells,, vol. 76, p.285–289, (2006).

DOI: 10.1016/j.jaap.2005.12.012

Google Scholar

[32] Catherine E Brewer, Characterization of Biochar from Fast Pyrolysis and Gasification Systems,, Am. IChE, vol. 28, no. 3, p.386–396, (2009).

Google Scholar

[33] M. Tripathi, J. N. Sahu, P. Ganesan, and J. Jewaratnam, Thermophysical characterization of oil palm shell (OPS) and OPS char synthesized by the microwave pyrolysis of OPS,, Appl. Therm. Eng., vol. 105, p.605–612, (2016).

DOI: 10.1016/j.applthermaleng.2016.03.053

Google Scholar

[34] S. Vas Jr., Biomass and Green Chemistry: Building Renewable Pathway, Springer International Publishing, Brazil, (2018).

Google Scholar

[35] A. Singh, A. K. Biswas, R. Singhai, B. L. Lakaria, and A. K. Dubey, Effect of Pyrolysis Temperature and Retention Time on Mustard Straw- Derived Biochar for Soil Amendment,, vol. 5, no. 9, p.31–37, (2015).

Google Scholar

[36] Shen, D.K., R. Xiao, S. Gu and H.Y. Zhang, 2013. The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass. In: Cellulose-Biomass Conversion, Ven V.D.T. and K. John (Eds.). InTech, USA., ISBN:13-9789535111726.

DOI: 10.5772/51883

Google Scholar

[37] A. Demirbas. Determination of calorific values of bio-chars and pyro-oils from pyrolysis of agricultural residues. J. Anal Appl Pyrolysis 721:243-8.

DOI: 10.1016/j.jaap.2004.06.005

Google Scholar