[1]
Information on https://www.thestar.com.my/news/nation/2016/05/24/malaysians-waste-15000-tonnes-of-food-daily.
Google Scholar
[2]
J. Parfitt, M. Barthel, and S. MacNaughton, Food waste within food supply chains: Quantification and potential for change to 2050,, Philos. Trans. R. Soc. B Biol. Sci., vol. 365, no. 1554, p.3065–3081, (2010).
DOI: 10.1098/rstb.2010.0126
Google Scholar
[3]
N. B. D. Thi, C. Y. Lin, and G. Kumar, Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy,, J. Clean. Prod., vol. 122, p.29–41, (2016).
DOI: 10.1016/j.jclepro.2016.02.034
Google Scholar
[4]
A. M. A. El Naggar, H. M. Gobara, H. A. El Sayed, and F. S. Soliman, New advances in hydrogen production via the catalytic decomposition of wax by-products using nanoparticles of SBA frame-worked MoO3,, Energy Convers. Manag., vol. 106, p.615–624, (2015).
DOI: 10.1016/j.enconman.2015.10.002
Google Scholar
[5]
S. E. Hosseini, M. A. Wahid, and A. Ganjehkaviri, An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia,, Energy Convers. Manag., vol. 94, p.415–429, (2015).
DOI: 10.1016/j.enconman.2015.02.012
Google Scholar
[6]
Solid waste management & Recycling Technology of Japan - Toward a Sustainable Society,, (2012).
Google Scholar
[7]
S. Sakai and M. Hiraoka, Municipal solid waste incinerator residue recycling by thermal processes,, Waste Manag., vol. 20, no. 2–3, p.249–258, (2000).
DOI: 10.1016/s0956-053x(99)00315-3
Google Scholar
[8]
B. S. Cohen, H. Martinez, and A. Schroder, Waste Management Practices in New York City , Hong Kong and Beijing,, no. December, p.1–20, (2015).
Google Scholar
[9]
N. Alert, Processing London ' s local food waste in an anaerobic digester avoids 3 . 9 tonnes of GHG emissions Processing London ' s local food waste in an anaerobic digester avoids 3 . 9 tonnes of GHG emissions ( continued ),, vol. 52, no. 503, (2018).
DOI: 10.1787/eco_surveys-lux-2012-graph38-en
Google Scholar
[10]
C. Di Blasi, Modeling and simulation of combustion processes of charring and non-charring solid fuels,, Prog. Energy Combust. Sci., vol. 19, no. 1, p.71–104, Jan. (1993).
DOI: 10.1016/0360-1285(93)90022-7
Google Scholar
[11]
M. I. Jahirul, M. G. Rasul, A. A. Chowdhury, and N. Ashwath, Biofuels production through biomass pyrolysis- A technological review,, Energies, vol. 5, no. 12, p.4952–5001, (2012).
DOI: 10.3390/en5124952
Google Scholar
[12]
P. Basu, Biomass Characteristics. Elsevier Inc., (2013).
Google Scholar
[13]
M. Tripathi, J. N. Sahu, and P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review,, Renewable and Sustainable Energy Reviews, vol. 55. Elsevier Ltd, p.467–481, (2016).
DOI: 10.1016/j.rser.2015.10.122
Google Scholar
[14]
M. A. Hossain, J. Jewaratnam, P. Ganesan, J. N. Sahu, S. Ramesh, and S. C. Poh, Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: Parametric investigation,, Energy Convers. Manag., vol. 115, p.232–243, (2016).
DOI: 10.1016/j.enconman.2016.02.058
Google Scholar
[15]
H. Hashim, M. Narayanasamy, N. A. Yunus, L. J. Shiun, Z. A. Muis, and W. S. Ho, A cleaner and greener fuel: Biofuel blend formulation and emission assessment,, J. Clean. Prod., vol. 146, p.208–217, (2017).
DOI: 10.1016/j.jclepro.2016.06.021
Google Scholar
[16]
M. A. Hamdan and R. H. Khalil, Simulation of compression engine powered by Biofuels,, Energy Convers. Manag., vol. 51, no. 8, p.1714–1718, (2010).
DOI: 10.1016/j.enconman.2009.10.037
Google Scholar
[17]
A. O. Abdulrahman and D. Huisingh, The role of biomass as a cleaner energy source in Egypt's energy mix,, J. Clean. Prod., vol. 172, p.3918–3930, (2018).
DOI: 10.1016/j.jclepro.2017.05.049
Google Scholar
[18]
L. F. Chuah, J. J. Klemeš, S. Yusup, A. Bokhari, and M. M. Akbar, A review of cleaner intensification technologies in biodiesel production,, J. Clean. Prod., vol. 146, p.181–193, (2017).
DOI: 10.1016/j.jclepro.2016.05.017
Google Scholar
[19]
L. Lin, D. Ying, S. Chaitep, and S. Vittayapadung, Biodiesel production from crude rice bran oil and properties as fuel,, Appl. Energy, vol. 86, no. 5, p.681–688, (2009).
DOI: 10.1016/j.apenergy.2008.06.002
Google Scholar
[20]
V. B. Borugadda and V. V. Goud, Biodiesel production from renewable feedstocks: Status and opportunities,, Renew. Sustain. Energy Rev., vol. 16, no. 7, p.4763–4784, (2012).
DOI: 10.1016/j.rser.2012.04.010
Google Scholar
[21]
H. Liu, X. Ma, L. Li, Z. Hu, P. Guo, and Y. Jiang, Bioresource Technology The catalytic pyrolysis of food waste by microwave heating,, Bioresour. Technol., vol. 166, p.45–50, (2014).
DOI: 10.1016/j.biortech.2014.05.020
Google Scholar
[22]
B. Zhang, Z. Zhong, M. Min, K. Ding, Q. Xie, and R. Ruan, Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study,, Bioresour. Technol., vol. 189, p.30–35, (2015).
DOI: 10.1016/j.biortech.2015.03.092
Google Scholar
[23]
K. Konsolakis, M., Kaklidis, N., Marnellos, G.E., Zaharaki, D., Komnitsas, Assessment of biochar as feedstock in a direct carbon Solid Oxide Fuel Cell,, R. Soc. Chem., (2016).
DOI: 10.1039/c5ra13409a
Google Scholar
[24]
P. McKendry, Energy production from biomass (Part 2): Conversion technologies.,, Bioresour. Technol., vol. 83, no. 1, p.47–54, (2002).
Google Scholar
[25]
D. Mohan, C. U. Pittman, and P. H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review,, Energy and Fuels, vol. 20, no. 3, p.848–889, (2006).
DOI: 10.1021/ef0502397
Google Scholar
[26]
A. R. Mohamed, Z. Hamzah, M. Z. M. Daud, and Z. Zakaria, The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed bed reactor,, Procedia Eng., vol. 53, p.185–191, (2013).
DOI: 10.1016/j.proeng.2013.02.024
Google Scholar
[27]
Q. Yan, Effects of Pyrolysis Conditions on Yield of Bio-Chars from Pine Chips,, vol. 61, no. 11, p.367–371, (2011).
DOI: 10.13073/0015-7473-61.5.367
Google Scholar
[28]
Q. Xie et al., Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production,, Bioresour. Technol., vol. 172, p.162–168, (2014).
DOI: 10.1016/j.biortech.2014.09.006
Google Scholar
[29]
M. Balat and H. Balat, Recent trends in global production and utilization of bio-ethanol fuel,, Applied Energy. (2009).
DOI: 10.1016/j.apenergy.2009.03.015
Google Scholar
[30]
H. Zhang, R. Xiao, H. Huang, and G. Xiao, Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor,, Bioresour. Technol., (2009).
DOI: 10.1016/j.biortech.2008.08.031
Google Scholar
[31]
A. Demirbas, Effect of temperature on pyrolysis products from four nut shells,, vol. 76, p.285–289, (2006).
DOI: 10.1016/j.jaap.2005.12.012
Google Scholar
[32]
Catherine E Brewer, Characterization of Biochar from Fast Pyrolysis and Gasification Systems,, Am. IChE, vol. 28, no. 3, p.386–396, (2009).
Google Scholar
[33]
M. Tripathi, J. N. Sahu, P. Ganesan, and J. Jewaratnam, Thermophysical characterization of oil palm shell (OPS) and OPS char synthesized by the microwave pyrolysis of OPS,, Appl. Therm. Eng., vol. 105, p.605–612, (2016).
DOI: 10.1016/j.applthermaleng.2016.03.053
Google Scholar
[34]
S. Vas Jr., Biomass and Green Chemistry: Building Renewable Pathway, Springer International Publishing, Brazil, (2018).
Google Scholar
[35]
A. Singh, A. K. Biswas, R. Singhai, B. L. Lakaria, and A. K. Dubey, Effect of Pyrolysis Temperature and Retention Time on Mustard Straw- Derived Biochar for Soil Amendment,, vol. 5, no. 9, p.31–37, (2015).
Google Scholar
[36]
Shen, D.K., R. Xiao, S. Gu and H.Y. Zhang, 2013. The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass. In: Cellulose-Biomass Conversion, Ven V.D.T. and K. John (Eds.). InTech, USA., ISBN:13-9789535111726.
DOI: 10.5772/51883
Google Scholar
[37]
A. Demirbas. Determination of calorific values of bio-chars and pyro-oils from pyrolysis of agricultural residues. J. Anal Appl Pyrolysis 721:243-8.
DOI: 10.1016/j.jaap.2004.06.005
Google Scholar