[1]
Chakravarti, S., Gupta, A. & Hunek, B. Advanced Technology for the Capture of Carbon Dioxide from Flue Gases. 2001 May; Available from: http://www.netl.doe.gov.
Google Scholar
[2]
Carbon conundrum, climate change, CO2 capture and consumptions. (2016). Sciencedirect.com. Retrieved 20 December 2016, from http://www.sciencedirect.com/science/article/pii/S221298201400 0365.
Google Scholar
[3]
Leung, Dennis Y.C., Giorgio Caramanna, and M. Mercedes Maroto-Valer. An Overview Of Current Status Of Carbon Dioxide Capture And Storage Technologies,. Renewable and Sustainable Energy Reviews 39 (2014): 426-443. Web.
DOI: 10.1016/j.rser.2014.07.093
Google Scholar
[4]
Van-Dal, É. & Bouallou, C. (2013). Design and simulation of a renewable methanol production plant from CO2 hydrogenation. Journal of Cleaner Production, 57, 38-45.
DOI: 10.1016/j.jclepro.2013.06.008
Google Scholar
[5]
Oyenekan, Babatunde A., and Gary T. Rochelle. Energy Performance of Stripper Configurations For Co2capture By Aqueous Amines,. Industrial & Engineering Chemistry Research 45.8 (2006): 2457-2464.
DOI: 10.1021/ie050548k
Google Scholar
[6]
Gervasi, J., Dubois, L., & Thomas, D. (2014). Simulation of the Post-combustion CO2 Capture with Aspen HysysTM Software: Study of Different Configurations of an Absorption regeneration Process for the Application to Cement Flue Gases. Energy Procedia, 63, 1018-1028.
DOI: 10.1016/j.egypro.2014.11.109
Google Scholar
[7]
Felder, R. (2013). Elementary principles of chemical processes (1st ed.). Australia: John Wiley and Sons Ltd.
Google Scholar
[8]
Mäyrä, O. & Leiviskä, K. (2008). Modelling in renewable methanol synthesis (1st ed., p.4). Oulu: Control Engineering Laboratory of University of Oulu.
Google Scholar
[9]
CO2 Capture Technologies - Section 2. (2012) (1st ed., p.9 to 11). Melbourne. Retrieved from https://www.globalccsinstitute.com.
Google Scholar
[10]
Olah, Goeppert, and Prakash, 2009. George A. Olah, Alain Goeppert, and G.K. Surya Prakash. Beyond Oil and Gas: The Methanol Economy. Wiley-VCH Verlag GmbH and Co. KgaA, (2009).
DOI: 10.1007/s10698-011-9141-x
Google Scholar
[11]
Ahn, H., Luberti, M., Liu, Z., & Brandani, S. (2013). Process Simulation of Aqueous MEA Plants for Post Combustion Capture from Coal-Fired Power Plants. Energy Procedia, 37, 1523-1531.
DOI: 10.1016/j.egypro.2013.06.028
Google Scholar
[12]
Karimi, M., Hillestad, M., & Svendsen, H. F. (2011). Capital Costs and Energy Consideration of Different Alternative Stripper Configurations for Post Combustion Carbon Dioxide Capture. Chemical Engineering Research and Design, 89, 1229-1236.
DOI: 10.1016/j.cherd.2011.03.005
Google Scholar
[13]
Liang, H., Xu, Z., & Si, F. (2011). Economic Analysis of Amine Based Carbon Dioxide Capture System with Bi-Pressure Stripper in Supercritical Coal-Fireed Power Plant. International Journal of Greenhouse Gas Control, 5, 702-709.
DOI: 10.1016/j.ijggc.2011.01.004
Google Scholar
[14]
Coal-Fired Power Plants in Malaysia". Gallery. Power Plants Around The World. 29 August 2010. Retrieved 15 June (2014).
Google Scholar
[15]
SEB to build more thermal power plants in next nine years". The Borneo Post. Retrieved 13 May (2016).
Google Scholar
[16]
C. Bergins, K.-C. Tran, E.-I. Koytsoumpa, E. Kakaras, T. Buddenberg, Ó. Sigurbjörnsson/ POWER-GEN Europe 2015, Amsterdam, 9-11 June 2015 / Power to Methanol Solutions.
DOI: 10.1115/1.4032544
Google Scholar
[17]
Pérez-Fortes, M., Schöneberger, J.C., Boulamanti, A., & Tzimas, E. (2016). Methanol synthesis using captured CO 2 as raw material: Techno-economic and environmental assessment. Applied Energy, 161, 718–732.
DOI: 10.1016/j.apenergy.2015.07.067
Google Scholar