[1]
S.N. Che Kamarludin, M.S. Jainal, A. Azizan, N.S. Mohd Safaai, Mechanical Pretreatment of Lignocellulosic Biomass for Biofuel Production Applied Mechanics and Material 625 (2014) 838-841.
DOI: 10.4028/www.scientific.net/amm.625.838
Google Scholar
[2]
N.S. Mohd Safaai, A. Azizan, M. Ramli, S.N. Che Kamarludin, Overview on Mechanical-Chemical Ionic Liquid Pretreatment Study on Bioethanol-based Lignocellulosic Biomass Advanced Material Research 1125 ( 2015) 260-265.
DOI: 10.4028/www.scientific.net/amr.1125.260
Google Scholar
[3]
N. Mohd, S.F.S. Draman, M.S.N. Salleh, N.B. Yusof, Dissolution of Cellulose in Ionic Liquid: A Review American Institute of Physics 1809 (2017).
DOI: 10.1063/1.4975450
Google Scholar
[4]
A. Zuliahani, R. Nurul Nadhirah, A.R. Rozyanty, W.I. Nawawi, A.N. Seman, Crystallinity, Tapping and Bulk Density of Microcrystalline Cellulose (MCC) Isolated from Rice Husk (RH) Applied Mechanics and Materials 835 (2016) 272-276.
DOI: 10.4028/www.scientific.net/amm.835.272
Google Scholar
[5]
U. Henniges, M. Hasan, A. Potthast, G. Westman, T. Rosenau, Electron beam irradiation of cellulosic materials opportunities and limitations Materials 6(5) (2013) 1584– 1598.
DOI: 10.3390/ma6051584
Google Scholar
[6]
C.L. Duarte, M.A. Ribeiro, H. Oikawa, M.N. Mori, C.M. Napolitano, C.A. Galvao, Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse Radiation Physics and Chemistry 81(8) (2012) 1008-1011.
DOI: 10.1016/j.radphyschem.2011.11.008
Google Scholar
[7]
A. Kristiani, N. Effendi, Y. Aristiawan, F. Aulia, Y. Sudiyani, Effect of Combining Chemical and Irradiation Pretreatment Process to Characteristic of Oil Palm's Empty Fruit Bunches as Raw Material for Second Generation BioethanolEnergy Procedia 68 (2015) 195-204.
DOI: 10.1016/j.egypro.2015.03.248
Google Scholar
[8]
J.P. Jeun, B.M. Lee, J.Y. Lee, P.H. Kang, J.K. Park, An irradiation-alkaline pretreatment of kenaf core for improving the sugar yield Renewable Energy 79 (2015) 51-55.
DOI: 10.1016/j.renene.2014.10.030
Google Scholar
[9]
Y.X. An, M.H. Zong, H. Wu, N. Li, Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse Bioresource Technology 192 (2015) 165-171.
DOI: 10.1016/j.biortech.2015.05.064
Google Scholar
[10]
R. Pezoa, V. Cortinez, S. Hyvarinen, M. Reunanen, J. Hemming, M.E. Lienqueo, O. Salazar, R. Carmona, A. Garcia, D.Y. Murzin, J.P. Mikkola, Use of ionic liquids in the pretreatment of forest and agricultural residues for the production of bioethanol. Cell Chem Technol. 44 (2010) 165–172.
Google Scholar
[11]
S. Bhagwat, S. Ratnaparkhe, A. Kumar, Biomass pre-treatment method and their economic viability for efficient production of biofuel British Biotechnology Journal 8(2) (2015) 1-17.
DOI: 10.9734/bbj/2015/18284
Google Scholar
[12]
F.G. Hurtubise and H. Krassig, Classification of fine structural characteristics in cellulose by infrared spectroscopy. Use of potassium bromide pellet technique Analytical Chemistry 32 (1962) 177-181.
DOI: 10.1021/ac60158a010
Google Scholar
[13]
R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Roger Dissolution (2002).
Google Scholar
[14]
H. Li, Y. Qu, Y. Yang, S. Chang, J. Xu, Microwave irradiation - A green and efficient way to pretreat biomass Bioresource Technology 199 (2016) 34-41.
DOI: 10.1016/j.biortech.2015.08.099
Google Scholar
[15]
A. Azizan, N.S. Mohd Shafaei, N.S. Sidek, F. Hanafi, N. Mokhti, S. Zaharudin, Fourier Transform Infrared Spectroscopy interpretation on pretreated Acacia Auriculifromis, Melastoma Malabathricum and Leucaeana Leucocephala International Journal of Applied Engineering Research 11 (2016) 10048-10050.
Google Scholar
[16]
C.M. Popescu, G. Singurel, C. Vasile, D.S. Argyropoulos, S. Willfor, Spectral Characterization of Eucalyptus Wood Applied Spectroscopy 61 (2007).
DOI: 10.1366/000370207782597076
Google Scholar
[17]
Q. Hu, X. Su, L. Tan, X. Liu, A. Wu, D. Su, K. Tian, X. Xiong, Effects of a Steam Explosion Pretreatment on Sugar Production by Enzymatic Hydrolysis and Structural Properties of Reed Straw Bioscience Biotechnology Biochemistry 77(11) (2013) 2181-2187.
DOI: 10.1271/bbb.130269
Google Scholar
[18]
D. Ciolacu, J. Kovac, V. Kokol, The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers Carbohydrate Research 345(5) (2010) 621-630.
DOI: 10.1016/j.carres.2009.12.023
Google Scholar