[1]
J. Stockeme, R. Winand, and P. Van den Brande, Comparison of Wear and Corrosion Behaviors of Cr and CrN Sputtered Coatings, Surf. Coat. Technol. 115 (1999) 230-233.
DOI: 10.1016/s0257-8972(99)00177-2
Google Scholar
[2]
L. Shan, Y. Wang, J. Li, X. Jiang, J. Chen, Improving tribological performance of CrN coatings in seawater by structure design, Tribol. Int. 82 (2015) 78-88.
DOI: 10.1016/j.triboint.2014.10.006
Google Scholar
[3]
T. Bin, Z. Xiaodong, H. Naisai, H. Jiawen, Study on the structure and tribological properties of CrN coating by IBED, Surf. Coat. Technol. 131 (2000) 391-394.
DOI: 10.1016/s0257-8972(00)00769-6
Google Scholar
[4]
M. Novakovic´, M. Popovic´, N. Bibic, Ion-beam irradiation effects on reactively sputtered CrN thin films, Nucl. Instr. Meth. Phys. Res. B. 268 (2010) 2883-2887.
DOI: 10.2298/pac1101025n
Google Scholar
[5]
H. Ichimura, I. Ando, Mechanical properties of arc-evaporated CrN coatings: Part I: nanoindentation hardness and elastic modulus, Surf. Coat. Technol. 145 (2001) 88-93.
DOI: 10.1016/s0257-8972(01)01290-7
Google Scholar
[6]
S.H. Lee, N. Kakati, J. Maiti, S.H. Jee, D.J. Kalita, Y.S. Yoon, Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells, Thin Solid Films. 529 (2013) 374-379.
DOI: 10.1016/j.tsf.2012.09.027
Google Scholar
[7]
H.N. Shah, V. Chawla, R. Jayaganthan, D. Kaur, Microstructural characterizations and hardness evaluation of d.c. reactive magnetron sputtered CrN thin films on stainless steel substrate, Bull. Mater. Sci. 33 (2010) 103-110.
DOI: 10.1007/s12034-010-0014-z
Google Scholar
[8]
P. Panjana, B. Navinsek, B. Zorko, A. Zalar, The determination of nitrogen in CrN system by RBS and the weight gain technique, Thin Solid Films. 343-344 (1999) 265-268.
DOI: 10.1016/s0040-6090(98)01570-3
Google Scholar
[9]
T. Kacsich, K.P. Lieb, A. Schaper, O. Schulter, Oxidation of thin chromium nitride films: Kinetics and morphology, J. Phys. Condens. Matter. 8 (1996) 10703-10719.
DOI: 10.1088/0953-8984/8/49/055
Google Scholar
[10]
W. Ernst J. Neidhardt, H. Willmann, B. Sartory, P.H. Mayrhofer, C. Mitterer, Thermal decomposition routes of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering, Thin Solid Films. 517 (2008) 568-574.
DOI: 10.1016/j.tsf.2008.06.086
Google Scholar
[11]
P.H. Mayrhofer, H. Willmann, C. Mitterer, Oxidation kinetics of sputtered Cr–N hard coatings, Surf. Coat. Technol. 146-147 (2001) 222-228.
DOI: 10.1016/s0257-8972(01)01471-2
Google Scholar
[12]
Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, C.H. Wu, A comparative study of the oxidation behavior of Cr2N and CrN coatings, Thin Solid Films. 544 (2013) 515-520.
DOI: 10.1016/j.tsf.2013.01.031
Google Scholar
[13]
H.-Y. Chen, F.-H. Lu, Oxidation behavior of chromium nitride films, Thin Solid Films. 515 (2006) 2719-2184.
DOI: 10.1016/j.tsf.2006.06.039
Google Scholar
[14]
J. Lin, N. Zhang, W.D. Sproul, J.J. Moore, A comparison of the oxidation behavior of CrN films deposited using continuous dc, pulsed dc and modulated pulsed power magnetron sputtering, Surf. Coat. Technol. 206 (2012) 3283-3290.
DOI: 10.1016/j.surfcoat.2012.01.033
Google Scholar
[15]
P.Panjana, B. Navinšek, A. Cvelbara, A. Zalar, I. Milošev, Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature, Thin Solid Films. 281-282 (1996) 298-301.
DOI: 10.1016/0040-6090(96)08663-4
Google Scholar
[16]
Otani, S. Hofmann, High temperature oxidation behaviour of (Ti1-xCrx)N coatings, Thin Solid Films. 287 (1996) 188-192.
DOI: 10.1016/s0040-6090(96)08789-5
Google Scholar
[17]
D.B. Lee, Y.C. Lee, S.C. Kwon, High temperature oxidation of a CrN coating deposited on a steel substrate by ion plating, Surf. Coat. Technol. 141 (2001) 227-231.
DOI: 10.1016/s0257-8972(01)01238-5
Google Scholar