The Interconnected Open-Channel Highly Porous Carbon Material Derived from Pineapple Leaf Fibers as a Sustainable Electrode Material for Electrochemical Energy Storage Devices

Article Preview

Abstract:

The activated porous carbon anode material was successfully prepared from the agro-waste pineapple leaf fiber by using the simple hydrothermal technique and KOH chemical activation under heat treatment in Ar atmosphere. The obtained amorphous activated carbon with three-dimensional interconnected porous structure exhibited a high specific surface area of about 1520 m2/g. Furthermore, polyaniline (PANI) conductive polymer was grown on the porous carbon surface to promote its capacitance for the preliminary test as the anode for a lithium battery. The SEM characterization revealed the homogeneous longitudinal growth of polyaniline crystalline at the applied concentration of 0.03M aniline monomers on the surface of targeted porous carbon. The pineapple leaf fiber derived activated porous carbon could exhibit high capacity density as 320 mAh/g for the initial charge-discharge test and then substantially dropped to the reversible capacity of about 63 mAh/g at a current density of 0.5C. After composited with polyaniline, the porous carbon/polyaniline composite showed the superior initial capacity density of 425 mAh/g with the following improved reversible capacity by 27% relative to that of the bared porous carbon material. Moreover, the conducted porous carbon/polyaniline composite could also sustain higher cycle stability after 50 cycling tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-104

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Scrosati, and J. Garche. Lithium batteries: Status, prospects and future. Journal of Power Sources, 195 (2010), 2419-2430.

DOI: 10.1016/j.jpowsour.2009.11.048

Google Scholar

[2] V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas, and B. Wei. Supercapacitors from Activated Carbon Derived from Banana Fibers. The Journal of Physical Chemistry C, 111 (2007), 7527-7531.

DOI: 10.1021/jp067009t

Google Scholar

[3] L. Jiang, G. W. Nelson, S. O. Han, H. Kim, I. N. Sim and J. S. Foord. Natural Cellulose Materials for Supercapacitors. Electrochim. Acta 192 (2016), 251-258.

DOI: 10.1016/j.electacta.2015.12.138

Google Scholar

[4] K. L. Ong, A. Kurniawan , A. C. Suwandi, C. X. Lin, X. S. Zhao,  and S. Ismadji.  A facile and green preparation of durian shell-derived carbon electrodes for electrochemical double-layer capacitors. Prog. Nat. Sci. Mater. Int., 22 (2012), 624-630.

DOI: 10.1016/j.pnsc.2012.11.001

Google Scholar

[5] E. Y. L. Teo, L. Muniandy, E. P. Ng, F. Adam, A. R. Mohamed, R. Jose and K. F. Chong. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim. Acta., 192 (2016), 110-119.

DOI: 10.1016/j.electacta.2016.01.140

Google Scholar

[6] A. G. Dumanli and A.H. Windle. Carbon fibres from cellulosic precursors: a review. Journal of Material Science, 47 (2012), 4236–4250.

DOI: 10.1007/s10853-011-6081-8

Google Scholar

[7] A. Rahman. Study on modified pineapple leaf fiber. Journal of Textile and Apparel Technology and Management, 7 (2011) 1–16.

Google Scholar

[8] B. Zhu, et al. Pyrolyzed polyaniline and graphene nano sheet composite with improved rate and cycle performance for lithium storage. Carbon, 92 (2015), 354-361.

DOI: 10.1016/j.carbon.2015.05.051

Google Scholar

[9] H. Fan, H. Wang, N. Zhao, X. Zhang, J. Xu. Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode, Journal of Material Chemistry, 22 (2012), 2774-2780.

DOI: 10.1039/c1jm14311e

Google Scholar

[10] N. Kengkhetkit, and T. Amornsakchai. Utilization of pineapple leaf waste for plastic reinforcement1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Productions, 4 (2012), 55-61.

DOI: 10.1016/j.indcrop.2012.02.037

Google Scholar

[11] J. Sodtipinta, C. Ieosakulrat, N. Poonyayant, P. Kidkhunthod, N. Chenlek, T. Amornsakchai and P. Pakawatpanurut. Interconnected open-channel carbon nanosheets derived from pineapple leaf fiber as a sustainable active material for superconductors. Indistrial Creps & Products. 104 (2017), 13-20.

DOI: 10.1016/j.indcrop.2017.04.015

Google Scholar

[12] Y. Miao, Y. Huang, W. Fan and T. Liu. Electrospun polymer nanofiber membrane electrodes and electrolyte for highly flexible and foldable all-solid-state superconducitors. Royal society of chemistry. 5 (2015), 26189-26196.

DOI: 10.1039/c5ra00138b

Google Scholar

[13] X. Cheng, R. Zhang, C. Zhao, F. Wei, J. Zhang and Q. Zhang. A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Advanced Science. 3 (2016), 1-20.

DOI: 10.1002/advs.201670011

Google Scholar

[14] H. Ru, K. Xiang, W. Zhou, Y. Zhu, X. S. Zhao and H. Chen. A Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochimica Acta. 222 (2016), 551-560.

DOI: 10.1016/j.electacta.2016.10.202

Google Scholar

[15] I. Elizabeth, B. P. Singh, S. Trikha and S. Gopukumar. Bio-deviced hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. Journal of Power Sources.329 (2016), 412-421.

DOI: 10.1016/j.jpowsour.2016.08.106

Google Scholar

[16] X. Sun, X. Wang, N. Feng, L. Qiao, X. Li and D. He. A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. Journal of Analytical and Applied Pyrolysis. 101 (2013), 181-185.

DOI: 10.1016/j.jaap.2012.12.016

Google Scholar

[17] O. Fromm, A. Heckmann, U. C. Rodehorst, J. Frerichs, D. Becker, M. winter and T. Placke. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon. 128 (2018), 147-163.

DOI: 10.1016/j.carbon.2017.11.065

Google Scholar

[18] X. Huang Fabrication and Properties of Carbon Fibers. Materials, 2 (2009), 2369-2403.

Google Scholar

[19] Y. R. Rhim, D. Zhang, D. H. Fairbrother, K. A. Wepasnick, K. J. Livi, R. J. Bodnar, and D. C. Nagle. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon. 48 (2010), 1012-1024.

DOI: 10.1016/j.carbon.2009.11.020

Google Scholar