[1]
M. Gidwani, A. Bhagwani, N. Rohra, Supercapacitors: the near future of batteries, Int. J. Eng. Invent. 4 (2014) 22-28.
Google Scholar
[2]
X. Huang, H. Yu, J. Chen, Z. Lu, R. Yazami, H. H. Hng, Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration, Adv. Mater. 26 (2014) 1296-1303.
DOI: 10.1002/adma.201304467
Google Scholar
[3]
Z. Wu, L. Li, J. M. Yan, X. B. Zhang, Materials design and system construction for conventional and new-concept supercapacitors, Adv. Sci. (Weinh., Baden-Wurtt., Ger.) 4 (2017) 1600382-1600382.
DOI: 10.1002/advs.201600382
Google Scholar
[4]
Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy & Environ. Sci. 8 (2015) 702-730.
DOI: 10.1039/c4ee03229b
Google Scholar
[5]
E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937-950.
DOI: 10.1016/s0008-6223(00)00183-4
Google Scholar
[6]
M. Lee, T. Kim, C. Bae, H. Shin, J. Kim, Fabrication and applications of metal-oxide nano-tubes, JOM 62 (2010) 44-49.
DOI: 10.1007/s11837-010-0058-y
Google Scholar
[7]
H. Zhou, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for supercapacitors, J. Phys. Chem. C, 118 (2014) 5626-5636.
DOI: 10.1021/jp4082883
Google Scholar
[8]
D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye- sensitized solar cells, ACS Nano 2(2008) 1113-1116.
DOI: 10.1021/nn800174y
Google Scholar
[9]
X. Lu, G. Wang, T. Zhai, J. M. Yu, Y. L. Tong, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett. 12 (2012) 1690-1696.
DOI: 10.1021/nl300173j
Google Scholar
[10]
T. S. Kang, A.P. Smith, B.E. Taylor, M.F. Durstock, Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells, Nano Lett. 9 (2009) 601-606.
DOI: 10.1021/nl802818d
Google Scholar
[11]
H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for TiO2 nanotube array growth by anodization, J. Phys. Chem. C 111 (2007) 7235-7241.
DOI: 10.1021/jp070273h
Google Scholar
[12]
A. Arunachalam, S. Dhanapandian, C. Manoharan, R. Sridhar, Characterization of sprayed TiO2 on ITO substrates for solar cell applications, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 149 (2015) 904-912.
DOI: 10.1016/j.saa.2015.05.014
Google Scholar
[13]
G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Letters 6 (2006) 215-218.
DOI: 10.1021/nl052099j
Google Scholar
[14]
M. Salari, S.H. Aboutalebi, K. Konstantinov, H.-K. Liu, A highly ordered titania nanotube array as a supercapacitor electrode, Phys. Chem. Chem. Phys. 13(2011) 5038-5041.
DOI: 10.1039/c0cp02054k
Google Scholar
[15]
J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Cur. Opin. Solid State Mater. Sci. 11 (2007) 3-18.
DOI: 10.1016/j.cossms.2007.08.004
Google Scholar
[16]
P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed. 50 (2011) 2904-2939.
DOI: 10.1002/anie.201001374
Google Scholar
[17]
L. Kavan, B. O'Regan, A. Kay, M. Grätzel, Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3, J. Electroanal. Chem. 346 (1993) 291-307.
DOI: 10.1016/0022-0728(93)85020-h
Google Scholar
[18]
S. Karthik, K.M. Gopal, E.P. Haripriya, Y. Sorachon, P. Maggie, K.V. Oomman, A.G. Craig, Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnol. 18 (2007) 065707.
DOI: 10.1088/0957-4484/18/6/065707
Google Scholar
[19]
S.M. Jogade, D.S. Sutrave, Electrochemical performance of Mn doped Co3O4 supercapacitor: effect of aqueous electrolytes, J. Mater. Sci. Eng. 6 (2017) 351.
Google Scholar
[20]
Y. Q. Dang, S. Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors, Nanomater. 6 (2016) 212.
DOI: 10.3390/nano6110212
Google Scholar
[21]
Y. Hao, K. Santhakumar, S.P. Amaresh, J. Jae-Hyung, L. Yun Sung, L. Wu, Graphene supercapacitor with both high power and energy density, Nanotechnol. 28 (2017) 445401.
Google Scholar
[22]
A. Pina, A. Amaya, J. Marcuzzo, A. Rodrigues, M. Baldan, N. Tancredi, A. Cuña, Supercapacitor electrode based on activated carbon wool felt, C 4 (2018) 1-12.
DOI: 10.3390/c4020024
Google Scholar