Physical and Electrical Property of TiO2 Nanotube Arrays for Supercapacitors

Article Preview

Abstract:

TiO2 nanotube arrays (TiO2 NTAs) were prepared by anodization method. The as-prepared TiO2 NTAs were annealed at 450 °C for 3 h transforming amorphous TiO2 to anatase TiO2. The inner diameter and tube length of synthesized TiO2 NTAs are approximately 100 nm and 1.0 mm, respectively. Electric double-layer capacitor (EDLC) was fabricated using TiO2 NTAs as electrodes with 6 M KOH electrolyte. The internal resistance of the EDLC is relatively low (3.8 – 6.5 Ω) depending on the operating temperature. This work confirmed experimentally the use of TiO2 NTAs as EDLC electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gidwani, A. Bhagwani, N. Rohra, Supercapacitors: the near future of batteries, Int. J. Eng. Invent. 4 (2014) 22-28.

Google Scholar

[2] X. Huang, H. Yu, J. Chen, Z. Lu, R. Yazami, H. H. Hng, Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration, Adv. Mater. 26 (2014) 1296-1303.

DOI: 10.1002/adma.201304467

Google Scholar

[3] Z. Wu, L. Li, J. M. Yan, X. B. Zhang, Materials design and system construction for conventional and new-concept supercapacitors, Adv. Sci. (Weinh., Baden-Wurtt., Ger.) 4 (2017) 1600382-1600382.

DOI: 10.1002/advs.201600382

Google Scholar

[4] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy & Environ. Sci. 8 (2015) 702-730.

DOI: 10.1039/c4ee03229b

Google Scholar

[5] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39 (2001) 937-950.

DOI: 10.1016/s0008-6223(00)00183-4

Google Scholar

[6] M. Lee, T. Kim, C. Bae, H. Shin, J. Kim, Fabrication and applications of metal-oxide nano-tubes, JOM 62 (2010) 44-49.

DOI: 10.1007/s11837-010-0058-y

Google Scholar

[7] H. Zhou, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for supercapacitors, J. Phys. Chem. C, 118 (2014) 5626-5636.

DOI: 10.1021/jp4082883

Google Scholar

[8] D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye- sensitized solar cells, ACS Nano 2(2008) 1113-1116.

DOI: 10.1021/nn800174y

Google Scholar

[9] X. Lu, G. Wang, T. Zhai, J. M. Yu, Y. L. Tong, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett. 12 (2012) 1690-1696.

DOI: 10.1021/nl300173j

Google Scholar

[10] T. S. Kang, A.P. Smith, B.E. Taylor, M.F. Durstock, Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells, Nano Lett. 9 (2009) 601-606.

DOI: 10.1021/nl802818d

Google Scholar

[11] H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, A new benchmark for TiO2 nanotube array growth by anodization, J. Phys. Chem. C 111 (2007) 7235-7241.

DOI: 10.1021/jp070273h

Google Scholar

[12] A. Arunachalam, S. Dhanapandian, C. Manoharan, R. Sridhar, Characterization of sprayed TiO2 on ITO substrates for solar cell applications, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 149 (2015) 904-912.

DOI: 10.1016/j.saa.2015.05.014

Google Scholar

[13] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Letters 6 (2006) 215-218.

DOI: 10.1021/nl052099j

Google Scholar

[14] M. Salari, S.H. Aboutalebi, K. Konstantinov, H.-K. Liu, A highly ordered titania nanotube array as a supercapacitor electrode, Phys. Chem. Chem. Phys. 13(2011) 5038-5041.

DOI: 10.1039/c0cp02054k

Google Scholar

[15] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Cur. Opin. Solid State Mater. Sci. 11 (2007) 3-18.

DOI: 10.1016/j.cossms.2007.08.004

Google Scholar

[16] P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed. 50 (2011) 2904-2939.

DOI: 10.1002/anie.201001374

Google Scholar

[17] L. Kavan, B. O'Regan, A. Kay, M. Grätzel, Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3, J. Electroanal. Chem. 346 (1993) 291-307.

DOI: 10.1016/0022-0728(93)85020-h

Google Scholar

[18] S. Karthik, K.M. Gopal, E.P. Haripriya, Y. Sorachon, P. Maggie, K.V. Oomman, A.G. Craig, Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnol. 18 (2007) 065707.

DOI: 10.1088/0957-4484/18/6/065707

Google Scholar

[19] S.M. Jogade, D.S. Sutrave, Electrochemical performance of Mn doped Co3O4 supercapacitor: effect of aqueous electrolytes, J. Mater. Sci. Eng. 6 (2017) 351.

Google Scholar

[20] Y. Q. Dang, S. Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors, Nanomater. 6 (2016) 212.

DOI: 10.3390/nano6110212

Google Scholar

[21] Y. Hao, K. Santhakumar, S.P. Amaresh, J. Jae-Hyung, L. Yun Sung, L. Wu, Graphene supercapacitor with both high power and energy density, Nanotechnol. 28 (2017) 445401.

Google Scholar

[22] A. Pina, A. Amaya, J. Marcuzzo, A. Rodrigues, M. Baldan, N. Tancredi, A. Cuña, Supercapacitor electrode based on activated carbon wool felt, C 4 (2018) 1-12.

DOI: 10.3390/c4020024

Google Scholar