[1]
S. Manotham, P. Butnoi, P. Jaita, N. Kumar, K. Chokethawai, G. Rujijanagul, David P. Cann, Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium titanate-based piezoelectric ceramics, J. Alloys Compd. 739 (2018) 457-467.
DOI: 10.1016/j.jallcom.2017.12.175
Google Scholar
[2]
B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics, Academic Press, London and New York, (1971).
Google Scholar
[3]
J. Yoo, J. Hong, H. Lee, Y. Jeong, B. Lee, H. Song, J. Kwon, Piezoelectric and dielectric properties of La2O3 added Bi(Na,K)TiO3-SrTiO3 ceramics for pressure sensor application, Sens. Actuator. A. 126 (2006) 41–47.
DOI: 10.1016/j.sna.2005.09.005
Google Scholar
[4]
P. Butnoi, S. Manotham, P. Jaita, C. Randorn, G. Rujijanagul, High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr, J. Eur. Ceram. Soc. 38 (2018) 3822–3832.
DOI: 10.1016/j.jeurceramsoc.2018.04.024
Google Scholar
[5]
R. Zuo, H. Wang, B. Ma, L. Li, Effects of Nb5+ doping on sintering and electrical properties of lead-free (Bi0.5Na0.5)TiO3 ceramics, J. Mater. Sci. Mater. Electron. 20 (2009) 1140–1143.
DOI: 10.1007/s10854-008-9840-9
Google Scholar
[6]
A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys. 38 (1999) 5564–5567.
Google Scholar
[7]
A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah, I.W. Kim, Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics, Sens. Actuator. A. 158 (2010) 84–89.
DOI: 10.1016/j.sna.2009.12.027
Google Scholar
[8]
T. H. Dinh, H.Y. Lee, C.H Yoon, R.A. Malik, Y.M Kong, J.S. Lee, Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics, J. Kor. Phys. Soc, 62, (2013) 1004-1008.
DOI: 10.3938/jkps.62.1004
Google Scholar
[9]
D. B. Marshall, T. Noma, and A. G. Evans, A simple method for determining elastic modulus to hardness ratios using knoop indentation measurements, J.Am.Ceram.Soc. 65, (1982) C175–176.
DOI: 10.1111/j.1151-2916.1982.tb10357.x
Google Scholar
[10]
G. R. Antis, P. Chantikul, B. R. Lawn, and D. B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurement, J. Am. Ceram. Soc. 64, (1981) 533–538.
DOI: 10.1111/j.1151-2916.1981.tb10320.x
Google Scholar
[11]
P. Jaita, S. Manotham, P. Butnoi, R. Sanjoom, P. Arkornsakul, D. R. Sweatman, C. Kruea-In, T. Tunkasiri, The mechanical and electrical properties of modified-BNKT lead-free ceramics, Integrated Ferroelectrics, 187 (2018) 147-155.
DOI: 10.1080/10584587.2018.1444888
Google Scholar
[12]
A. Kumar, S. K. Mishra, Dielectric, piezoelectric, and ferroelectric properties of lanthanum modified PZTFN ceramics, Int. J. Miner. Metall. Mater. 21 (2014) 1-8.
DOI: 10.1007/s12613-014-1003-9
Google Scholar