[1]
M. B. Ogundiran, F. A. Winjobi, The potential of binary blended geopolymer binder containing Ijero-Ekiti calcined kaolin clay and ground waste window glass, Afr. J. Pure. Appl. Chem. 9 (2015) 159-166.
DOI: 10.5897/ajpac2015.0640
Google Scholar
[2]
C. Bai, P. Colombo, Processing, properties and applications of highly porous geopolymers: a review, Ceram. Int. 44 (2018) 16103-16118.
DOI: 10.1016/j.ceramint.2018.05.219
Google Scholar
[3]
S. F. Alam Zaidi, E. Ul. Haq, K. Nur, N. Ejaz, M. Anis-ur-Rehman, M. Zubair, M. Naveed, Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations, Constr. Build. Mater. 157 (2017) 994-1000.
DOI: 10.1016/j.conbuildmat.2017.09.112
Google Scholar
[4]
L. Yun-Ming, H. Cheng-Yong, M. M. Al Bakri, K. Hussin, Structure and Properties of Clay-based Geopolymer Cements: A Review, Prog. Mater. Sci. 83 (2016) 595-629.
Google Scholar
[5]
B. B. Kenne Diffoa, A. Elimbia, M. Cyrb, J. Dika Manga, H. T. Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, Asian J. Ceram. Soci. 3 (2015) 130-138.
DOI: 10.1016/j.jascer.2014.12.003
Google Scholar
[6]
N. Y. Mostafa, Q. Mohsen, A. El-maghraby, Characterization of low-purity clays for geopoly- mer binder formulation, Int. J. Miner. Metall. Mater. 21 (2014) 609-619.
DOI: 10.1007/s12613-014-0949-y
Google Scholar
[7]
C. Bai, G. Franchin, H. Elsayed, A. Zaggia, L. Conte, H. Li, P. Colombo, High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment, J. Mater. Res. 32 (2017) 3251-3259.
DOI: 10.1557/jmr.2017.127
Google Scholar
[8]
R. M. Novais, L. H. Buruberri, G. Ascensao, M. P. Seabra, L. A. Labrincha, Porous biomass fly ash-based geopolmers with tailored thermal conductivity, J. Clean. Prod. 119 (2016) 99-107.
DOI: 10.1016/j.jclepro.2016.01.083
Google Scholar
[9]
A. Hajimohammadia, T. Ngoa, P. Mendisa, T. Nguyena, A. Kashania, J. S. J. V. Deventerb, Pore characteristics in one-part mix geopolymers foamed by H2O2: The impact of mix design, Mater. Des. 130 (2017) 381-391.
DOI: 10.1016/j.matdes.2017.05.084
Google Scholar
[10]
A. Pardossi, G. Carmassi, C. Diara, L. Incrocci, R. Maggini, D. Massa, Fertigation and substrate management in closed soilless culture, first ed., Pisa, Italy, (2011).
DOI: 10.17660/actahortic.2009.807.63
Google Scholar
[11]
Md. Saifullah, AKM S. R. Mollick, Md. Mokter Hossain, GMA Halim, T. Asao, Soilless culture-use of substrates for the production of quality horticultural crops, In: Md. Asaduzzaman (Eds), Influence of soilless culture substrate on improvement of yield and produce quality of horticultural crops, Publishing Inc., Bangladesh, 2015, pp.1-32.
DOI: 10.5772/59708
Google Scholar
[12]
S. Ondono, J. J. Martinez-Snchez, J. L. Moreno, The inorganic component of green roof substrates impacts the growth of Mediterranean plant species as well as the C and N sequestration potential, Ecol. Indic. 61 (2016) 739-752.
DOI: 10.1016/j.ecolind.2015.10.025
Google Scholar
[13]
A. Graceson, M. Hare, N. Hall, J. Monaghan, Use of inorganic substrates and composted green waste in growing media for green roofs, Biosyst. Eng. 124 (2014) 1-7.
DOI: 10.1016/j.biosystemseng.2014.05.007
Google Scholar
[14]
M. Eksi, D. B. Rowe, Green roof substrates: Effect of recycled crushed porcelain and foamed glass on plant growth and water retention, Urban. For. Urban. Green. 20 (2016) 81-88.
DOI: 10.1016/j.ufug.2016.08.008
Google Scholar
[15]
R. M. Senthamara, P. D. Manoharan, Concrete with ceramic waste aggregate, Cem. Conc. Comp. 27 (2005) 910-913.
Google Scholar
[16]
M. S. Khan, M. Sohail, N. S. Khattak, M. Sayed, Industrial ceramic waste in Pakistan, valuable material for possible applications, J. Clean. Prod. 139 (2016) 1520-1528.
DOI: 10.1016/j.jclepro.2016.08.131
Google Scholar
[17]
H. Y. Aruntas, M. Guru, M. Dayi, I. Tekin, Utilization of waste marble dust as an additive in cement production, Mater. Design. 31 (2010) 4039-4042.
DOI: 10.1016/j.matdes.2010.03.036
Google Scholar
[18]
W. Acchar, F. Vieira, D. Hotza, Effect of marble and granite sludge in clay materials, Mat. Sci. Eng. 419 (2006) 306-309.
DOI: 10.1016/j.msea.2006.01.021
Google Scholar
[19]
E. I. Arslan, S. Aslan, U. Ipek, S. Altun, S. Yazicioglu, Physico-chemical treatment of marble processing wastewater and the recycling of its sludge, Waste. Manage. Res. 23 (2005) 550-559.
DOI: 10.1177/0734242x05059668
Google Scholar
[20]
M. Guru, Y. Akyu, E. Akin, Effects of filler ratio on mechanical properties at natural stone powder/polyester composites. J. Polytech. 8 (2005) 271-274.
DOI: 10.2339/y2005.v8.n3.p271-274
Google Scholar
[21]
E. Kamseu, M. C. Bignozzi, U. C. Melo, C. Leonelli, V. M. Sglavo, Design of inorganic polymer cements: Effects of matrix strengthening on microstructure, Constr. Build. Mater. 38 (2013) 1135-1145.
DOI: 10.1016/j.conbuildmat.2012.09.033
Google Scholar
[22]
X. Guo, H. Shi, W. A. Dick, Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cem. Concr. Compos. 32 (2010) 142-147.
DOI: 10.1016/j.cemconcomp.2009.11.003
Google Scholar
[23]
H. Assaedi, T. Alomayri, F. U. A. SHAIKH, I. Low, Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites, J. Adv. Ceram. 4 (2015) 272-281.
DOI: 10.1007/s40145-015-0161-1
Google Scholar
[24]
D. Zaharaki, K. Komnitsas, V. Perdikatsis, Use of analytical techniques for identification of inorganic polymer gel composition, J. Mater. Sci. 45 (2010) 2715-2724.
DOI: 10.1007/s10853-010-4257-2
Google Scholar
[25]
L. Perez-Villarejo, E. Bonet-Martinez, D. Eliche-Quesada, P. J. Sanchez-Soto, J. M. Rincon- Lopez, E. Castro-Galiano, Biomass fly ash and aluminium industry slags-based geopolymers, Mater. Lett. 229 (2018) 6-12.
DOI: 10.1016/j.matlet.2018.06.100
Google Scholar
[26]
G. Masia, W. D. A. Rickard, L. Vickers, M. C. Bignozzi, A. Riessen, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int. 40 (2014) 13891-13902.
DOI: 10.1016/j.ceramint.2014.05.108
Google Scholar
[27]
Z. Zhang, J. L. Provis, A. Reid, H. Wang, Geopolymer foam concrete: An emerging material for sustainable construction, Constr. Build. Mater. 56 (2014) 113-127.
DOI: 10.1016/j.conbuildmat.2014.01.081
Google Scholar
[28]
Z. Zhang, H. Wang, The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus, Front. Mater. 3 (2016) 1-10.
DOI: 10.3389/fmats.2016.00038
Google Scholar