Preparation and Characterization of Ceramic Waste-Based Geopolymer Ceramic Composites for Substrate Culture Application

Article Preview

Abstract:

The present study focuses on the new application of geopolymer ceramic composites as substrate cultures, resulting from the geopolymer properties being similar to those of the substrate cultures such as water absorption, non-biodegradation, high porosity, and light weight. The geopolymers were synthesized from ceramic wastes and metakaolin using the geopolymerization method via a reaction with an alkaline solution. To compare usefulness for substrate culture applications, the porosity of different samples was varied. Moreover, the properties of all samples were investigated using an additional method of verification. The chemical characteristics were evaluated by FT-IR spectroscopy. The microstructures, pore sizes, pore distributions and surface areas of the pores were examined with image analysis using scanning electron microscopy (SEM). The densities were determined using the Archimedes’ method. The porosity and water absorption were also measured. The mechanical properties were investigated by using a compression testing machine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. B. Ogundiran, F. A. Winjobi, The potential of binary blended geopolymer binder containing Ijero-Ekiti calcined kaolin clay and ground waste window glass, Afr. J. Pure. Appl. Chem. 9 (2015) 159-166.

DOI: 10.5897/ajpac2015.0640

Google Scholar

[2] C. Bai, P. Colombo, Processing, properties and applications of highly porous geopolymers: a review, Ceram. Int. 44 (2018) 16103-16118.

DOI: 10.1016/j.ceramint.2018.05.219

Google Scholar

[3] S. F. Alam Zaidi, E. Ul. Haq, K. Nur, N. Ejaz, M. Anis-ur-Rehman, M. Zubair, M. Naveed, Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations, Constr. Build. Mater. 157 (2017) 994-1000.

DOI: 10.1016/j.conbuildmat.2017.09.112

Google Scholar

[4] L. Yun-Ming, H. Cheng-Yong, M. M. Al Bakri, K. Hussin, Structure and Properties of Clay-based Geopolymer Cements: A Review, Prog. Mater. Sci. 83 (2016) 595-629.

Google Scholar

[5] B. B. Kenne Diffoa, A. Elimbia, M. Cyrb, J. Dika Manga, H. T. Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers, Asian J. Ceram. Soci. 3 (2015) 130-138.

DOI: 10.1016/j.jascer.2014.12.003

Google Scholar

[6] N. Y. Mostafa, Q. Mohsen, A. El-maghraby, Characterization of low-purity clays for geopoly- mer binder formulation, Int. J. Miner. Metall. Mater. 21 (2014) 609-619.

DOI: 10.1007/s12613-014-0949-y

Google Scholar

[7] C. Bai, G. Franchin, H. Elsayed, A. Zaggia, L. Conte, H. Li, P. Colombo, High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment, J. Mater. Res. 32 (2017) 3251-3259.

DOI: 10.1557/jmr.2017.127

Google Scholar

[8] R. M. Novais, L. H. Buruberri, G. Ascensao, M. P. Seabra, L. A. Labrincha, Porous biomass fly ash-based geopolmers with tailored thermal conductivity, J. Clean. Prod. 119 (2016) 99-107.

DOI: 10.1016/j.jclepro.2016.01.083

Google Scholar

[9] A. Hajimohammadia, T. Ngoa, P. Mendisa, T. Nguyena, A. Kashania, J. S. J. V. Deventerb, Pore characteristics in one-part mix geopolymers foamed by H2O2: The impact of mix design, Mater. Des. 130 (2017) 381-391.

DOI: 10.1016/j.matdes.2017.05.084

Google Scholar

[10] A. Pardossi, G. Carmassi, C. Diara, L. Incrocci, R. Maggini, D. Massa, Fertigation and substrate management in closed soilless culture, first ed., Pisa, Italy, (2011).

DOI: 10.17660/actahortic.2009.807.63

Google Scholar

[11] Md. Saifullah, AKM S. R. Mollick, Md. Mokter Hossain, GMA Halim, T. Asao, Soilless culture-use of substrates for the production of quality horticultural crops, In: Md. Asaduzzaman (Eds), Influence of soilless culture substrate on improvement of yield and produce quality of horticultural crops, Publishing Inc., Bangladesh, 2015, pp.1-32.

DOI: 10.5772/59708

Google Scholar

[12] S. Ondono, J. J. Martinez-Snchez, J. L. Moreno, The inorganic component of green roof substrates impacts the growth of Mediterranean plant species as well as the C and N sequestration potential, Ecol. Indic. 61 (2016) 739-752.

DOI: 10.1016/j.ecolind.2015.10.025

Google Scholar

[13] A. Graceson, M. Hare, N. Hall, J. Monaghan, Use of inorganic substrates and composted green waste in growing media for green roofs, Biosyst. Eng. 124 (2014) 1-7.

DOI: 10.1016/j.biosystemseng.2014.05.007

Google Scholar

[14] M. Eksi, D. B. Rowe, Green roof substrates: Effect of recycled crushed porcelain and foamed glass on plant growth and water retention, Urban. For. Urban. Green. 20 (2016) 81-88.

DOI: 10.1016/j.ufug.2016.08.008

Google Scholar

[15] R. M. Senthamara, P. D. Manoharan, Concrete with ceramic waste aggregate, Cem. Conc. Comp. 27 (2005) 910-913.

Google Scholar

[16] M. S. Khan, M. Sohail, N. S. Khattak, M. Sayed, Industrial ceramic waste in Pakistan, valuable material for possible applications, J. Clean. Prod. 139 (2016) 1520-1528.

DOI: 10.1016/j.jclepro.2016.08.131

Google Scholar

[17] H. Y. Aruntas, M. Guru, M. Dayi, I. Tekin, Utilization of waste marble dust as an additive in cement production, Mater. Design. 31 (2010) 4039-4042.

DOI: 10.1016/j.matdes.2010.03.036

Google Scholar

[18] W. Acchar, F. Vieira, D. Hotza, Effect of marble and granite sludge in clay materials, Mat. Sci. Eng. 419 (2006) 306-309.

DOI: 10.1016/j.msea.2006.01.021

Google Scholar

[19] E. I. Arslan, S. Aslan, U. Ipek, S. Altun, S. Yazicioglu, Physico-chemical treatment of marble processing wastewater and the recycling of its sludge, Waste. Manage. Res. 23 (2005) 550-559.

DOI: 10.1177/0734242x05059668

Google Scholar

[20] M. Guru, Y. Akyu, E. Akin, Effects of filler ratio on mechanical properties at natural stone powder/polyester composites. J. Polytech. 8 (2005) 271-274.

DOI: 10.2339/y2005.v8.n3.p271-274

Google Scholar

[21] E. Kamseu, M. C. Bignozzi, U. C. Melo, C. Leonelli, V. M. Sglavo, Design of inorganic polymer cements: Effects of matrix strengthening on microstructure, Constr. Build. Mater. 38 (2013) 1135-1145.

DOI: 10.1016/j.conbuildmat.2012.09.033

Google Scholar

[22] X. Guo, H. Shi, W. A. Dick, Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cem. Concr. Compos. 32 (2010) 142-147.

DOI: 10.1016/j.cemconcomp.2009.11.003

Google Scholar

[23] H. Assaedi, T. Alomayri, F. U. A. SHAIKH, I. Low, Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites, J. Adv. Ceram. 4 (2015) 272-281.

DOI: 10.1007/s40145-015-0161-1

Google Scholar

[24] D. Zaharaki, K. Komnitsas, V. Perdikatsis, Use of analytical techniques for identification of inorganic polymer gel composition, J. Mater. Sci. 45 (2010) 2715-2724.

DOI: 10.1007/s10853-010-4257-2

Google Scholar

[25] L. Perez-Villarejo, E. Bonet-Martinez, D. Eliche-Quesada, P. J. Sanchez-Soto, J. M. Rincon- Lopez, E. Castro-Galiano, Biomass fly ash and aluminium industry slags-based geopolymers, Mater. Lett. 229 (2018) 6-12.

DOI: 10.1016/j.matlet.2018.06.100

Google Scholar

[26] G. Masia, W. D. A. Rickard, L. Vickers, M. C. Bignozzi, A. Riessen, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int. 40 (2014) 13891-13902.

DOI: 10.1016/j.ceramint.2014.05.108

Google Scholar

[27] Z. Zhang, J. L. Provis, A. Reid, H. Wang, Geopolymer foam concrete: An emerging material for sustainable construction, Constr. Build. Mater. 56 (2014) 113-127.

DOI: 10.1016/j.conbuildmat.2014.01.081

Google Scholar

[28] Z. Zhang, H. Wang, The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus, Front. Mater. 3 (2016) 1-10.

DOI: 10.3389/fmats.2016.00038

Google Scholar