Effect of Sintering Temperature on Mechanical and Electrical Properties of Lead-Free Bi0.5(Na0.4K0.1)Ti0.98Zr0.02O3 Piezoelectric Ceramics

Article Preview

Abstract:

Effect of sintering temperatures on phase formation, mechanical and electrical properties of lead-free Bi0.5(Na0.8K0.2)0.5Ti0.98Zr0.02O3 or BNKTZ piezoelectric ceramics were investigated. The BNKTZ ceramics were prepared via a conventional solid-state sintering technique under various sintering temperature range 1100-1150°C for 2 h. The phase formation and microstructure of the ceramics were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM) method, respectively. XRD analysis indicated that all samples exhibited a single perovskite structure and no secondary phase. SEM microscopy study revealed an increase in grain size with increasing sintering temperature. The maximum values of density and maximum dielectric constant of the ceramics sintered at 1125 °C were 5.79 g/cm3 and 3446, respectively. In addition, the ceramics sintered at 1125 °C showed highest mechanical properties (HV = 4.32 GPa, HK = 5.87 GPa, E = 143 GPa and KIC = 1.30 MPa.m1/2). The highest values of ferroelectric and piezoelectric were found at this sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3-SrZrO3 ceramics, Mater. Chem. Phys. 143 (2014) 1282-1288.

DOI: 10.1016/j.matchemphys.2013.11.035

Google Scholar

[2] K.T. Lee, J.S. Park, J.H. Cho, Y.H. Jeong, J.H. Paik, J.S. Yun, Phase transition and electrical characteristics of Bi0.5(Na0.78K0.22)0.5TiO3-BiFeO3 lead-free piezoelectric ceramics, Ceram. Int. 41 (2015) 10298-10303.

DOI: 10.1016/j.ceramint.2015.04.063

Google Scholar

[3] V. Chauhan, S.K. Ghosh, A. Hussain, S.K. Rou, Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics, J. Alloys Compd. 674 (2016) 413-424.

DOI: 10.1016/j.jallcom.2016.02.231

Google Scholar

[4] A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems, Jpn. J. Appl. Phys. 38 (1999) 5564-5567.

Google Scholar

[5] K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3, Jap. J. Appl. Phys. 45 (2006) 4493-4496.

DOI: 10.1016/j.ceramint.2007.10.023

Google Scholar

[6] M. Zou, H. Fan, L. Chen, W. Yang, Microstructure and electrical properties of (1- x)[0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3]-xBiFeO3 lead-free piezoelectric ceramics, J. Alloys Compd. 495 (2010) 280-283.

DOI: 10.1016/j.jallcom.2010.02.025

Google Scholar

[7] K.N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J.S. Lee, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater. Lett. 64 (2010) 2219-2222.

DOI: 10.1016/j.matlet.2010.07.048

Google Scholar

[8] H. Zhang, J. Zhou, J. Shen, X. Yang, C. Wu, K. Han, Z. Zhao, W. Chen, Enhanced piezoelectric property and promoted depolarization temperature in Fe doped Bi1/2(Na0.8K0.2)1/2TiO3 lead-free ceramics, Ceram. Int. 43 (2017) 16395-16402.

DOI: 10.1016/j.ceramint.2017.09.015

Google Scholar

[9] A. Hussain, C.W. Ahn, J.S. Lee, A. Ullah, I.W. Kim, Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics, Sen. Act. A 158 (2010) 84-89.

DOI: 10.1016/j.sna.2009.12.027

Google Scholar

[10] Y.R. Zhang, J.F. Li, B.P. Zhang, Enhancing electrical properties in NBT-KBT lead-free piezoelectric ceramics by optimizing sintering temperature, J. Am. Ceram. Soc. 91 (2008) 2716-2719.

DOI: 10.1111/j.1551-2916.2008.02469.x

Google Scholar

[11] F.J. Paneto, J.L. Pereira, J.O. Lima, E.J. Jesus, L.A. Silva, E.S. Lima, R.F. Cabral, C. Santos, Effect of porosity on hardness of Al2O3-Y3Al5O12 ceramic composite, Int. J. Refrac. Met. Hard Mater. 48 (2015) 365-368.

DOI: 10.1016/j.ijrmhm.2014.09.010

Google Scholar

[12] G. Arlt, D. Hennings, G. de With, Dielectric properties of fine grained barium titanate ceramics, J. Appl. Phys. 58 (1985) 1619-1625.

DOI: 10.1063/1.336051

Google Scholar

[13] M.S. Alkathy, A. Hezam, K.S.D. Manoja, J. Wang, C. Cheng, K. Byrappa, K.C.J. Raju, Effect of sintering temperature on structural, electrical, and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics, J. Alloys Compd. 762 (2018) 49-61.

DOI: 10.1016/j.jallcom.2018.05.138

Google Scholar

[14] P. Thawong, C. Kornphom, S. Prasertpalichat, S. Pinitsoontorn, S. Chootin, T. Bongkarn, Effect of firing temperatures on properties of BNT-BCTZ-0.007mol%BFCO lead free piezoelectric ceramics synthesized by the solid state combustion method, Ceram. Int. 43 (2017) S172-S181.

DOI: 10.1016/j.ceramint.2017.05.292

Google Scholar

[15] T.G. Lee, H.J. Lee, S.J. Park, T.H. Lee, D.H. Kim, C.H. Hong, H.B. Xu, C.Y. Kang, S. Nahm, Structural and piezoelectric properties of <001> textured PZT-PZNN piezoelectric ceramics, J. Am Ceram Soc. 100 (2017) 5681-5692.

DOI: 10.1111/jace.15113

Google Scholar