The Effect of Poly(Butylene Adipate-co-Terephthalate) on Crystallization Behavior and Morphology of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)

Article Preview

Abstract:

The effects of poly(butylene adipate-co-terephthalate) (PBAT) on crystallization behavior and morphology of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were studied to provide the useful information to control and improve PHBV processing. PHBV were blended with 15, 30 and 50 wt% PBAT by twin screw extrusion and these were subsequently compared to unblended PHBV. The rate of crystal development determined from differential scanning calorimetry (DSC) at 120 °C showed that the incorporation of PBAT retarded the crystal growth rate. Moreover, the crystal structure of polymer blends was examined by X-ray diffraction (XRD) and the results revealed that PBAT did not affect the crystal structure of PHBV. The responses of the melt-crystallized PHBV to different quantities of PBAT were recorded by polarized optical microscopy (POM). The results demonstrated that the size of spherulite dramatically increased when 15 wt% PBAT was added and the shape of spherulite was imperfect when PBAT reached 30 wt%. The morphologies of PHBV and its blends on the freeze-fractured specimens were exposed using scanning electron microscopy (SEM). The SEM images revealed the phase separation of PHBV/ PBAT blends in any composition. The morphology of 15 and 30 wt% PBAT presented droplet in matrix morphology and changed to co-continuous morphology at 50 wt% PBAT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-350

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kunioka, A. Tamaki, Y. Doi, Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), Macromolecules. 22 (1989) 694-697.

DOI: 10.1021/ma00192a031

Google Scholar

[2] S. Bloembergen, D.A. Holden, G.K. Hamer, T.L. Bluhm, R.H. Marchessault, Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate), Macromolecules. 19 (1986) 2865-2871.

DOI: 10.1021/ma00165a034

Google Scholar

[3] H. Mitomo, P.J. Barham, A. Keller, Temperature dependence of mechanical properties of poly (beta-hydroxybutyrate- beta-hydroxyvalerate), Polym. Commun. 29 (1988) 112-115.

Google Scholar

[4] M. Scandola, M.L. Focarete, G. Adamus, W. Sikorska, I. Baranowska, S. Swierczek, M. Gnatowski, M. Kowalczuk, Z. Jedlinski, Polymer blends of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a synthetic atactic poly(3-hydroxybutyrate). Characterization and biodegradation studies, Macromolecules. 30 (1997) 2568-2574.

DOI: 10.1021/ma961431y

Google Scholar

[5] Q. Zhang, Y. Zhang, F. Wang, L. Liu, C. Wang, Thermal properties of PHB/PEG blends, J. Mater. Sci. Technol. 14 (1998) 95-96.

Google Scholar

[6] L.L. Zhang, S.H. Goh, S.Y. Lee, G.R. Hee, Miscibility, melting and crystallization behavior of two bacterial polyester/poly(epichlorohydrin-co-ethylene oxide) blend systems, Polymer. 41 (2000) 1429-1439.

DOI: 10.1016/s0032-3861(99)00320-1

Google Scholar

[7] Z.B. Qiu, S. Fujinamib, M. Komurab, K. Nakajimab, T. Ikeharaa, T. Nishi, Spherulitic morphology and growth of poly(vinylidene fluoride)/poly(3-hydroxybutyrate-co-hydroxyvalerate) blends by optical microscopy, Polymer. 45 (2004) 4355-4360.

DOI: 10.1016/j.polymer.2004.04.054

Google Scholar

[8] Z.B. Qiu, W.T. Yang, T. Ikehara, T. Nishi, Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(3-caprolactone), Polymer. 46 (2005) 11814-11819.

DOI: 10.1016/j.polymer.2005.10.058

Google Scholar

[9] K. Sombatmankhong, O. Suwantong, S. Waleetorncheepsawat, P. Supaphol, Electrospun fiber mats of poly(3‐hydroxybutyrate), poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate), and their blends, J. Polym. Sci. Part B Polym. Phys. 44 (2006) 2923-2933.

DOI: 10.1002/polb.20915

Google Scholar

[10] S.M. Tan, J. Ismail, C. Kummerlowe, H.W. Kammer, Crystallization and melting behavior of blends comprising poly(3‐hydroxy butyrate‐co‐3‐hydroxyvalerate) and poly(ethylene oxide), J. Appl. Polym. Sci. 101 (2006) 2776-2783.

DOI: 10.1002/app.21921

Google Scholar

[11] K. Sombatmankhong, N. Sanchavanakit, P. Pavasant, P. Supaphol, Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend, Polymer. 48 (2007) 1419-1427.

DOI: 10.1016/j.polymer.2007.01.014

Google Scholar

[12] C. C. Han, H. Kammer, S. L. Har, T. Winie, Morphologies and kinetics of isothermal crystallization for green polymer blends comprising PHBV and ENR: Influence of rubbery phase, Int. J. Pharm. Pharm. Sci. 3 (2011) 10-15.

Google Scholar

[13] N. Koyama, Y. Doi, Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid], Polymer 38 (1997) 1589-1593.

DOI: 10.1016/s0032-3861(96)00685-4

Google Scholar

[14] X. Wang, Z. Chen, X. Chen, J. Pan, K. Xu, Miscibility, crystallization kinetics, and mechanical properties of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)/ poly(3‐hydroxybutyrate‐co ‐4‐hydroxybutyrate) (P3/4HB) blends, J. App. Polym. Sci. 117 (2010) 838-848.

DOI: 10.1002/app.31215

Google Scholar

[15] M. Zhang, N.L. Thomas, Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties, Adv. Polym. Technol. 30 (2011) 67–79.

DOI: 10.1002/adv.20235

Google Scholar

[16] M.A. Abdelwahab, A. Flynn, B. Chiou, S. Imam, W. Orts, E. Chiellini, Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends, Polym. Degrad. Stab. 97 (2012) 1822-1828.

DOI: 10.1016/j.polymdegradstab.2012.05.036

Google Scholar

[17] H. Liu, Z. Gao, X. Hu, Z. Wang, T. Su, L. Yang, S. Yan, Blending modification of PHBV/PCL and its biodegradation by Pseudomonas mendocina, J. Polym. Environ. 25 (2017) 25: 156-164.

DOI: 10.1007/s10924-016-0795-2

Google Scholar

[18] Y.K. Dasan, A.H. Bhat, F. Ahmad, Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material, Carbohydr. Polym. 157 (2017) 1323-1332.

DOI: 10.1016/j.carbpol.2016.11.012

Google Scholar

[19] M.P. Arrieta, M.D. Samper, M. Aldas, J. López, On the use of PLA-PHB blends for sustainable food packaging applications, Materials. 10 (2017) 1008.

DOI: 10.3390/ma10091008

Google Scholar

[20] A. Javadi, A.J. Kramschuster, S. Pilla, J. Lee, S. Gong, L. Turng, Processing and characterization of microcellular PHBV/PBAT blends, Polym. Eng. and Sci. 50 (2010) 1440-1448.

DOI: 10.1002/pen.21661

Google Scholar

[21] J.M. Raquez, Y. Nabar, R. Narayan, P. Dubois, Novel high‐performance talc/poly [(butylene adipate)‐co‐terephthalate] hybrid materials, Macro. Mater. Eng. 293 (2008) 310-320.

DOI: 10.1002/mame.200700352

Google Scholar

[22] P. Scarfato, E. Avallone, D. Acierno, P. Russo, Optical and mechanical properties of UV-weathered biodegradable PHBV/PBAT nanocomposite films containing halloysite nanotubes, AIP Conf. Proc. 1599 (2014) 398-401.

DOI: 10.1063/1.4876862

Google Scholar

[23] S.P. Pawar, A. Misra, S. Bose, K. Chatterjee, V. Mittal, Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties, Colloid. Polym. Sci. 293 (2015) 2921-2930.

DOI: 10.1007/s00396-015-3700-y

Google Scholar

[24] V. Nagarajan, M. Misra, A.K. Mohanty, New engineered biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene adipate-co-terephthalate) (PBAT) blends and switchgrass: Fabrication and performance evaluation, Ind. Crops. Prod. 42 (2013) 461-468.

DOI: 10.1016/j.indcrop.2012.05.042

Google Scholar

[25] Information on http://bura.brunel.ac.uk/handle/2438/7350.

Google Scholar

[26] J.K. Lee, C.D. Han, Evolution of polymer blend morphology during compounding in a twin-screw extruder, Polymer. 41(2000) 1799-1815.

DOI: 10.1016/s0032-3861(99)00325-0

Google Scholar

[27] P. Van Puyvelde, A. Vananroye, R. Cardinaels, P. Moldenaers, Review on morphology development of immiscible blends in confined shear flow, Polymer. 49 (2008) 5363-5372.

DOI: 10.1016/j.polymer.2008.08.055

Google Scholar

[28] L.G. Leal, Droplet coalescence and breakup with application to polymer blending, J Cent. South Univ. Technol. 14(s1) (2007) 1-5.

DOI: 10.1007/s11771-007-0201-2

Google Scholar

[29] H. Sato, Y. Ando, H. Mitomo, Y. Ozaki, Infrared spectroscopy and X-ray diffraction studies of thermal behavior and lamella structures of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(HB-co-HV)) with PHB-type crystal structure and PHV-type crystal structure, Macromolecules. 44 (2011) 2829-2837.

DOI: 10.1021/ma102723n

Google Scholar

[30] G. Groeninckx, M. Vanneste, V. Everaert, Crystallization, morphological structure, and melting of polymer blends, in: L.A. Utracki (Eds.), Polymer Blends Handbook, Springer, Dordrech, 2003, pp.203-294.

DOI: 10.1007/0-306-48244-4_3

Google Scholar

[31] Y. Kong, J.N. Hay, Miscibility and crystallisation behaviour of poly(ethylene terephthalate)/polycarbonate blends, Polymer 43 (2002) 1805-1811.

DOI: 10.1016/s0032-3861(01)00772-8

Google Scholar

[32] L. Chang, Y.H. Chou, E.M. Woo, Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid), Colloid. Polym. Sci. 289 (2011) 199-211.

DOI: 10.1007/s00396-010-2330-7

Google Scholar