Light-Enhanced Adsorptive Desulfurization of Dibenzothiophene Using Supported TiO2-ZrO2

Article Preview

Abstract:

Combustion of diesel fuel containing sulfur compounds emits SOx into atmosphere causing acid rain and respiratory illness in human. Dibenzothiophene (DBT) is one of the most difficult sulfur compounds in diesel to be removed by hydrodesulfurization (HDS). To produce ultra-low sulfur diesel (<15 ppmw-S), severe operating condition is required. As a result, production cost is increase. In this work, we investigated an alternative method for sulfur removal called Light-enhanced Adsorptive Desulfurization or L-ADS using supported TiO2-ZrO2. The TiO2-ZrO2 was loaded on commercial γ-Al2O3, fumed silica (FS), silica gel (SG) and zeolite (Z30) by wet-impregnation method. Impact of these supports on DBT removal were focused. Characteristic of the supported TiO2-ZrO2 was analyzed by N2 adsorption-desorption, scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The presence of TiO2-ZrO2 greatly enhanced DBT removal compared to TiO2 and ZrO2. SG promoted DBT removal by facilitating the adsorption of dibenzothiophene sulfone (DBTO2), a product of DBT photocatalytic oxidation. Using TiO2-ZrO2/SG, 86% of sulfur was removed from 50 ppmw-S DBT/C16 within 4 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-396

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Song, X. Ma, New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Appl. Catal., B, 41 (2003) 207-238.

DOI: 10.1016/s0926-3373(02)00212-6

Google Scholar

[2] J. Xiao, X. Wang, Y. Chen, M. Fujii, C. Song, Ultra-deep adsorptive desulfurization of light-irradiated diesel fuel over supported TiO2–CeO2 adsorbents, Ind. Eng. Chem. Res., 52 (2013) 15746-15755.

DOI: 10.1021/ie402724q

Google Scholar

[3] S. Cui, F. Ma, Y. Wang, Oxidative desulfurization of model diesel oil over Ti-containing molecular sieves using hydrogen peroxide, React. Kinet. Catal. L., 92 (2007) 155-163.

DOI: 10.1007/s11144-007-5065-9

Google Scholar

[4] A. Bazyari, A.A. Khodadadi, A. Haghighat Mamaghani, J. Beheshtian, L.T. Thompson, Y. Mortazavi, Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization, Appl. Catal., B, 180 (2016) 65-77.

DOI: 10.1016/j.apcatb.2015.06.011

Google Scholar

[5] J. Xiao, X. Wang, M. Fujii, Q. Yang, C. Song, A novel approach for ultra-deep adsorptive desulfurization of diesel fuel over TiO2–CeO2/MCM-48 under ambient conditions, AIChE J., 59 (2013) 1441-1445.

DOI: 10.1002/aic.14085

Google Scholar

[6] G. Miao, F. Ye, L. Wu, X. Ren, J. Xiao, Z. Li, H. Wang, Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation, J. Hazard. Mater., 300 (2015) 426-432.

DOI: 10.1016/j.jhazmat.2015.07.027

Google Scholar

[7] H. Xu, S. Ouyang, L. Liu, P. Reunchan, N. Umezawa, J. Ye, Recent advances in TiO2-based photocatalysis, J. Mater. Chem., A, 2 (2014) 12642-12661.

DOI: 10.1039/c4ta00941j

Google Scholar

[8] B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Synthesis and characterization of ZrO2–TiO2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process, Appl. Catal., A, 333 (2007) 264-271.

DOI: 10.1016/j.apcata.2007.09.026

Google Scholar

[9] A. Kambur, G.S. Pozan, I. Boz, Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles, Appl. Catal., B, 115-116 (2012) 149-158.

DOI: 10.1016/j.apcatb.2011.12.012

Google Scholar

[10] B.M. Reddy, A. Khan, Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports, Catal. Rev. - Sci.and Eng., 47 (2005) 257-296.

DOI: 10.1002/chin.200540219

Google Scholar

[11] S. Thepwatee, Light-enhanced oxidative adsorption desulfurization of dibenzothiophene in diesel fuel over TiO2-ZrO2 Mixed Oxides (Doctoral dissertation), Pennsylvania State University, (2016).

DOI: 10.1021/acs.energyfuels.1c02517.s001

Google Scholar

[12] J. Xiao, S. Sitamraju, Y. Chen, S. Watanabe, M. Fujii, M. Janik, C. Song, Air-promoted adsorptive desulfurization of diesel fuel over Ti-Ce mixed metal oxides, AIChE J., 61 (2015) 631-639.

DOI: 10.1002/aic.14647

Google Scholar

[13] B. Qin, Y. Shen, B. Xu, S. Zhu, P. Li, Y. Liu, Mesoporous TiO2–SiO2 adsorbent for ultra-deep desulfurization of organic-S at room temperature and atmospheric pressure, RSC Adv., 8 (2018) 7579-7587.

DOI: 10.1039/c8ra00112j

Google Scholar

[14] A. Bazyari, Y. Mortazavi, A.A. Khodadadi, L.T. Thompson, R. Tafreshi, A. Zaker, O.T. Ajenifujah, Effects of alumina phases as nickel supports on deep reactive adsorption of (4,6-dimethyl) dibenzothiophene: Comparison between γ, δ, and θ-alumina, Appl. Catal., B, 180 (2016) 312-323.

DOI: 10.1016/j.apcatb.2015.06.025

Google Scholar

[15] J. Xiao, Z. Li, B. Liu, Q. Xia, M. Yu, Adsorption of benzothiophene and dibenzothiophene on ion-impregnated activated carbons and ion-exchanged Y zeolites, Energy Fuels, 22 (2008) 3858-3863.

DOI: 10.1021/ef800437e

Google Scholar