[1]
J. B. Heywood. (1998). Internal Combustion Engine Fundamentals, McGraw-Hill series in mechanical engineering, Singapore.
Google Scholar
[2]
Peter Eastwood. (2008). Particle Emission from Vehicles, John Wiley & Sons, Ltd, England.
Google Scholar
[3]
C.L. Myung and S. Park (2012). Exhaust Nanoparticle Emissions from Internal Combustion Engines: A Review, International Journal of Automotive Technology, Vol. 13, No.1, pp.9-22.
DOI: 10.1007/s12239-012-0002-y
Google Scholar
[4]
C. L. Myung, A. Ko and S. Park. (2014). Review on Characterization of Nano-particle Emissions and PM Morphology from Internal Combustion Engines: Part 1, International Journal of Automotive Technology, Vol. 15, No. 2, pp.203-218.
DOI: 10.1007/s12239-014-0022-x
Google Scholar
[5]
S. Mohankumar and P. Senthilkumar. (2017). Particulate Matter Formation and its Control Methodologies for Diesel Engine: A Comprehensive Review, Renewable and Sustainable Energy Reviews, Vol. 80, pp.1227-1238.
DOI: 10.1016/j.rser.2017.05.133
Google Scholar
[6]
K. Hanamura, P. Karin, L. Cui, P. Rubio, T. Tsuruta, T. Tanka and T. Suzuki. (2009). Micro- and Macroscopic Visualization of Particulate Matter Trapping and Regeneration Processes in Wall-flow Diesel Particulate Filters, International Journal of Engine Research, Vol. 10, pp.305-321.
DOI: 10.1243/14680874jer04209
Google Scholar
[7]
P. Tornehed and U. Olofsson. (2011). Lubricant Ash Particles in Diesel Engine Exhaust: Literature Review and Modelling Study, Proceedings of the Institution of Mechanical Engineers, Journal of Automotive Engineering, Vol. 225, Part D, pp.1055-1066.
DOI: 10.1177/0954407011402754
Google Scholar
[8]
Y. Wang, X. Liang, G. Shu, L. Dong, X. Sun and H. Yu. (2015). Effects of an Anti-wear Oil Additive on the Size Distribution, Morphology, and Nanostructure of Diesel Exhaust Particles, Tribology International, Vol. 92, pp.379-386.
DOI: 10.1016/j.triboint.2015.07.023
Google Scholar
[9]
Y. Wang, X. Liang, G. Shu and L. Dong. (2015). Impact of Lubricating Oil on Morphology of Particles from a Diesel Engine, Energy Procedia, Vol.75, pp.2388-2393.
DOI: 10.1016/j.egypro.2015.07.182
Google Scholar
[10]
P. Karin, H. Oki, K. Hanamura and C. Charoenphonphanich. (2012). Nanostructures and Oxidation Kinetics of Diesel Particulate Matters, An International Journal of the Thai Society of Mechanical Engineers, Vol. 1, No.2, pp.3-8.
Google Scholar
[11]
P. Karin, J. Boonsakda, K. Siricholathum, E. Saenkhumvong, C. Charoenphonphanich and K. Hanamura. (2017). Morphology and Oxidation Kinetics of CI Engine's Biodiesel Particulate Matters on Cordierite Diesel Particulate Filters using TGA, International Journal of Automotive Technology, Vol. 18, No. 1, pp.31-40.
DOI: 10.1007/s12239-017-0003-y
Google Scholar
[12]
A. Liati, P. Dimopoulos Eggenchwiler, D. Müller Gubler, Schreiber and M. Aguirre. (2012). Investigation of Diesel Ash Particulate Matter: A Scanning Electron Microscope and Transmission Electron Microscope Study, Atmospheric Environment, Vol. 49, pp.391-402.
DOI: 10.1016/j.atmosenv.2011.10.035
Google Scholar